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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca |

= Komponente pomeranja

y,2) = —2 22
u=uxvy,z) = —2Z— X, u
Y ox
ow
v=v(x,y,z) = —z—
5y A",
z,
w=w(xy2z)=w(xy)
= Komponente deformacije i
aZW aZW B 4 a) dx b)
Ex = —Z—ax2 Sy = —Z—ay2 &z = Y,V z,w& i h/2 11,
0%w _ —0 i ‘
Yyx = Yoy = —22 m Yex =Vxz =0  Vyz = Vzy = ===y "'" /o, 7 ¢ +
“ Veze izmedu napona, deformacija o~ 4. | fg |
i pomeranja 71 v
E Ez (0*w d0%w E Ez 2°w 0w
Ox = 1_v2(ex+vey) — 12\ ox2 +v6y2 % = 1_v2(vex+ey) — 12\ xz + dy?
0 tmt. =t o _(1—y)LZ 0*W  lneamu promenu po deblini ploce. SMicuci naponi 7, 17,
o, = = = o7 N =—-u- d drede iz konstitutivnih zakona (y,, = y,, = 0)
‘ T 204 1=v20x0Y i nisvjednaki nulliimajo parabolicny promeny [icnd kao

u Ojler-Bernulijevoj teoriji savijanja grede)
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= Sile v presecima

h/2
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

Y. — iy = Eh3 62W+ 92w " — iy = Eh3 62W+62W
X A 2= T —vy\axz T dy? y o A V2= "0 — vV oxz dy?
h/2 h/2 h/2 ER3 e
w
T, = f Teedz T, = f T,,dz M,y = M, = Tyyzdz = —m(l — V) 9x3y
—-h/2 —-h/2 —-h/2
= Uslovi ravnoteze
dx . X, u
T,d.
aTx N aTy + 0 /I 4 X A IMydx
= YV g, i
ox 0y 1z o N rves dyqudy Mg
aMx aMyx _ T _ 0 Mxydy > 'l ------- :’: (Mxy+ dMXde)dy
ax ay X / , ox
(M,+ M dy x| s (T 9T )y
aMxy + aMy 7 0 Oy - "
0x dy Y oM, ! v+ 2 aly
(Mt Wdy )x (T,+ —.2 dy)dx X

oy
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Uslovi ravnoteze

oMy OMyx -
ox  dy oT, , Ty | N 02 M, . 0°M,, o 02 My,
OM,, 0M, ox oy | 177 ax* ' ay? | “oxay
+—2—T,=0
0x dy - 2 g g
M =iz 5 2
62 82 82 ] Mx { } dx?* 0dy d0xdy
2 y ¢ = Uz D.oc = —q M,
2 2 — _
dx= 0y dxdy My, 6= { I{Zyy } q=1{q,}
= Transverzalne sile odreduju se iz uslova ravnoteze
Transverzalnim silama odgovara parabolicna
3 3 3 raspodela smicu¢ih napona 1,, i 1, PO Visini
— aMx + aMyx - _ Eh d°w + v d°w pogre{:npg prese‘ko.plgéev(_prcv_oggooni
X ax ay 12(1 _ VZ) axg axayz poprecni presek;ec_hmcne 5|r|n2e_|V|sme h)
o, = —|1-4(2) |1,
. OM,, s oM, Eh3 <63W N 3w ) 2h| o _
— — v _ 27
Yo ox dy 12(1 —v2)\ay3  ~ 0x20y - =% -4,
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Veze izmedu deformacije i pomeranja

Kx —62/6x2 __az_w " _az_W
£ =D,u { Ky }=l _aZ/ayZ {w) K2 = T X2 y 2 dy?
2kxy)  [=202/0 xdy 20y, = —2 (fxawy
Ky 92 /0 x?
K={KY} D, =—| 9%/0y? u={w}
2Kxy 292/9 xdy

= Veze izmedu napona (sila u presecima) i deformacije

M 1 v 0 Ky X 1 v 0
m, (o B v 1 0 |} b ER v 1 0

- — 2 1—v - — 2 1-
y 12(1-v3) |, 12(01-v3) |,

Xy 5 2ny

o = Dk

vV

2 |
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Diferencijalna jednacina savijanja

oM, OM,, -
+ -T,=0 2 9 2
ox | ay oT, 9T, 02M, 0°M, _02My,
— + +q,=0 > S+ = 12 = —q,

IM,,, N oM, - dx  0dy dx dy dx0y
0x dy ¥ -

Y. = K 0w 9%*w n

]

92w 92w azMx a My 0 Mxy .
My:—K<Vﬁ+a—yz> — —> axz + ayz + 2 axay = —(qz
0w
Mxy: yx__K(l_V)axa

0w , 'w  d*w g, _ EW
x4 dx20y? = dy* K 12(1 —v?)




Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Prirodni granicni uslovi
= Granicni uslovi po silama na konturi sa vektorom normale n |
vektorom tangente t, koja u opstem sluCcaju moze biti krivolinijska,
zadaju se preko momenta savijanja M,, i zamenjujuce transverzalne

A oM
sile T, = Ty, + — =

= 7a neopterecene slobodne konture ploce kod kojih je x = const.
granicni uslovi su

0°w  9*w _ OM,, 3w 03w
M, =—-K 6x2+v6y2 =0 T,=T,+ =—K|(l=—7+2—-v) =0

dy dx3 dx0dy?

= 7a neopterecene slobodne konture ploce kod kojih je y = const.
granicni uslovi su

M= k(v Ny poop Mo a3W+(2 )aBW —0
y o YV ox? dy2 ) Yoy ax dy3 Y dx20y )

U MKE na bazi pomeranja (metoda pomeranja) prirodni
granicni uslovi mogu samo aproksimativno da se zadovolje
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Esencijalni granicni uslovi
= Potpuno uklestena kontura

0 ow
w = — =
on
o o . -l 0w
= vodeciracuna da je ugib duz konture jednak nuli — =0 =0
: . : . : ot ondt
= 1]. momenti torzije M,,; jednaki su nuli
= Mesoviti granicni uslovi
= Slobodno oslonjena ivica
0 m, = —k (22,2
w = = — —_ V— | =
" on? ot?2 5
. o . ~Ow 0w
= s obzirom na to da je ugib duz konture jednak nuli ey = 312 =0

0°w 0%w 0°w
= odnosno M,, = —K(W+vm) =0=24%=0
= Ako je ploCa pravougaonog oblika slobodno oslonjena duz svih
kontura, vazi 52w 92w
w=0 —=0 ——=0
0x2 dy
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Rekapitulacija osnovnih jednacina linearne
teorije elasticnosti. Savijanje tankih ploca

= Potencijalna energija deformacije

1
U= > j(axex + oy&y, + Txy)/xy)dA
A

0% /0 x*
= odnosno koriste¢i € =Dyu D, =—| 0%/9y? u = {w}
92w 20%/0 xdy
Ky = ———
0x?
0w "x M
Ky=—ﬁ E=K= Ky o=Dk o= My
y 2K,y My,
e — o 2w
Fay = 0x0y
. ; 1 v 0
2 12(1 — v2) 1-v
A 0 O >
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Svaki ¢vor KE ima 3 stepena slobode (translatorno pomeranje

U pravcu z ose | rotacije oko osa x 1Y), 1j. KE ima ukupno 12
stepeni slobode

dT={d1 dz d3 d4}

d ={Wi ¢ix P}, i=1234 X, €

R"={R; R; R; Ry}

R’{ - {TlZ Mlx MlY}i i — 11213;4

= Uglovi obrtanja u cvorovima KE izrazavaju se preko
pomeranja na sledeci nacin

B ow B ow 1234
(plx_ ayl (ply_ axl L= 1,4,5,




Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Funkcija pomeranja u polju KE definisana je nepotpunim
polinomom cetvrtog stepena u kome nedostaju tri Clana, tj.
x4, y4ix2y2, pri Cemu je oCuvana simetrija

W=+ a,x + azy + ax? + asxy + agy? + +a,x3 + agx?y + agxy? + ayoy> + a1 x3y + axy3

a,
u=Aa-w=|[1 x y x? xy y* x3 x%y xy? y3 x3y xy3]{ 5 }
X12
= Raspodela rotacija poprecnih preseka u polju KE
dw
Oy = i as; + asx + 2agy + agx? + 2a9xy + 3a10y? + ay1x3 + 3a,xy?

a,
o,=[0 0 1 0 x 2y 0 x? 2xy 3y? x3 3xy?]y:
y y

a12
ow

¢y = ———=—(a, + 2a,x + asy + 3a;x% + 2agxy + agy® + 3a;1x%y + aq,y°)

a1
¢y=[0 -1 0 —-2x —y 0 —3x* —2xy —y?> 0 —3x2y —y3]{ }
@12
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca
= Vektor generalisanih pomeranja cvorova KE glasi

d = Cax
= Zamenom koordinata cvorova (granicni uslovi) sledi

1 —a —-b a®*> ab b* —a® —a?b —ab®* -b® a3b ab® 1
0 0 1 0 —a -2b 0 a? 2ab  3b%*? —a® —3ab?
0 -1 0 2a b 0 —3a? —-2ab —b? 0 3a%b b3
C=]: : : : : : : : : : : :
1 —a b a* —ab b*> —-a® a?*b —ab?® b® —-a3b —ab®
0 O 1 0 —a 2b 0 a®> —2ab 3b* —a® —3ab?
0 -1 0 2a -b 0 3a? 2ab  —b? 0 —3a%bh —b3
[2ab  ab? —a?b 2ab ab? a®’b 2ab —ab?* a’b 2ab —ab? —a?b]
—3b —b? ab 3b b2 ab 3b —b? ab —3b b? ab
—3a —ab a* -3a —-ab —-a* 3a —-ab a* 3a —-ab —a?
L, 1|a a . @ a . ‘a4 a (’) ‘e a (:)
C =gl pz b b2 b b2 b b2 b
1 0 1 1 0 1 1 0 1 0 1
a? a a? a a? a a? a
1 1 0 1 1 0 1 1 0 1 1 0
b2 b b2 b b2 b b2 b
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Pravougaoni KE sa 12 SS. Klasicnha
teorija ploca

= Matrica IF
N =AC! N=[N; N, N3 N,j
cvor 4

[(a=x)(b+y)(h?*(a — x)(2a + x) + a®by — a®y?)

cvor 1 cvor 2 cvor 3

[(=a+x)(b = y)(ab*x +:32;32+a2(—2b2+by+y2)) [(a+x)(b—y)(ab2x-b32x32 +a?(b—y)(2b+y)) [(a+ (b +y)(ab?x — b2x? + a?(2b = y)(b + y))
adh a3b3 a3b3
N =2 7(“"‘)“’;3)2“’ +9) N2 (a+ 26—y +y) Nl (@+x)(b—y)b+y)? N - _@=00b- )b +y)?
ab 8 T a2 ab?
_(a—x)z(a:rx)(b—y) (a-x)(@+x)b-y) (a= D)@+ 0 +) (a=x)*(a+x)(b+y)
a?b - @ - @ N azb

KR FAEE

WS e erees
:’n‘iil,’"i”';%;"i
KL 7

277
g
L1277 S

/ oo
& 5
AL ..:-7.,
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Matrica B

B=D,N=—

" 0°N;  0°N,  0°N;  0°N, ]
d0x? d0x? 0x? dx?
d°N, 0°N, 0?N; 0°%N,
dy? dy? dy? dy?
) 9?N; _9?°N, _09?°N; 092N,
| Oxdy ~ 0xdy  0xdy  0xdyl, ..,

3x(—b+y) 0 (a=3x)(b-y)
4a*b 4a’b
3(-a+x)y (a—x)(b-3y) 0
4ab’ 4ab’
36°x +a” (-4b* +3y*)  (b—y)(b+3y) (a—x)(a+3x)
| 4a°b’® - 4ab’ 4a’b
3x(b—y) 0 (a+3x)(b—y)
4a’b 4a’b
_3(a+x)y (a+x)(b—3y) 0
4ab’ 4agb’
-3b°x* +a” (46*=3y*)  (b-y)(b+3y) | (a—3x)(a+x)
4a°b’ 4qgb’ 4a’b
3x(b+y) o (a+3x)(b+y)
4a’b 4a’b
3(a+x)y _(a+x)(b+3y) 0
4ab’ 4qb’
3b°x* +a’ (—4b2 + 3y2) (b—=3y)(b+y) | (a-3x)(a+x)
4a°p’® 4ab’ - 4a’b
3x(b+y) . (a-3x)(b+y) ]
4a’b 4a’b
3(a—x)y _(a—x)(b+3y) 0
4ab’ 4ab’
3%+’ (46°=3y")  (b-3y)(b+y)  (a—x)(a+3x)
4a°p’® - 4ab’ - 4a’b

16
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

a b
= Matrica krutosti k= j B'DBdV = J j BTDBdxdy
%4 —a-b

Kolone 1 do 3 Kolone 4 do 6

4(a* +b* 2 2 2a° 40" 2 2 2 L
(';; )+§(7sz) TN L 7 L) 2 2 oran) P Zaaer)
5 2a° 2 8/, .,
4%+§(b+4bv) %(Saz—bz(—lﬂf)) —4aby = sbray)  (sa”w2b (1)) 0
b ap’ 2 4
—&—éa(1+4v) _daby g(sbz _az(_1+V)) T—ga(—1+v) 0 E(10bz +az(—1+V))
a
FRA : : 4(a"+b") 2 ad® 2 a2
%—%+§(—7+2v) 2%—%(b+4b\/) %—%a(—1+v) (azbz )+E(7_2V) %+E(b+4bv) T+ga(1+4v)
20 2 8 4’ 2 6, 2
= (braby) E(Saz+2bz(—1+v)) 0 =, +te(b+aby) E(5a -b*(-1+v)) 4aby
2 2
7£+§a(71+v) 0 %(lobz+az (—1+v)) %+§a(l+4v) 4abv g(sbzfa2 (—1+v))
ER? a 2 2 2 2
== 2 5(a*+b*) 2(s50” +b7(<1+v)) = 2(s5b* +a*(-1+v)) _4d® 2 2 oy a2, 26" 2 04
48ab(1-v?) 5[7_ - = — bz4 Z 022 S(7+) s (-14v)  ——-Ca(l+av)
a 2 2
2 _Zp(— — (100> + b? (-1 0
2(50” +b* (-1+v)) 4 . b 5"( +v) 15( o’ b7 (-1+v))
5 155 ' (1+v)) 2 2 8 (12
= —Za(1+4v) 0 —(56* +2a*(-1+v))
2(sb +a* (-1+v)) 4 (g a 5 15
- sa 0 (56 e (-1+v)) 2[75(a4+b“)2v] 2(sa* +b*(-1+v))  2(sb*+a*(-1+v))
2 2 2 2 272
_4L+&+E(_7+2‘,) —4i+3b(—1+v) —£+za(1+4v) > a'b 5b >a
b’ a5 b 5 a 5 S
40’ 2 4 (1002 4 2 2o+ (1+7)) i(5aﬂ—bz(—1+v)) 0
= gb1y) E(1oa +b7(-1+v)) 0 5 s
2 2 8 2(sb” +a* (~1+v)) 4
7T+ga(1+4v) 0 E(sz +2a° (—1+v)) — 0 E(sz —az(—1+v))
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Pravougaoni KE sa 12 SS. Klasicna

teorija plo

= Matrica krutosti k= j

%4

ca

Kolone 7 do 9

4 4
2[7 5(0 2+2b ) ZvJ
5 a‘h

2(5a2 +b7(-1+ v))

2(5b2 +a’(-1+ v))

5a

2(5[1Z +b7(-1+ v))

B"DBdAV = J j B"DBdxdy
—a-b

Kolone 10 do 12

4d> 26° 2 4’ 2 20" 2
T Z(-7+2v) T—gb(—1+v) —T+ga(1+4v)
4> 2 4
—— b1y E(maZ +b7(-1+v)) 0

0

%(sz +2a" (-1+v))

2(50” +b*(-1+v))

2(sb” +a* (-1+v))

5b

- % f—s(Saz—bz(—1+v)) 0
w 0 %(sbl —a (—1+v))
L 2 M 2y 2 2o
5
7%+Eb(fl+v) 14—5(10:;,Z +b7(-1+v)) 0
;
%—70(1+4v) 0 %(sz +2d" (-1+v))
4(f:2;rzb4)+ 5(7_2V) _%—é(b+4b\/) %bz+§a(1+4v)
5
—%—E(b+4bv) %(Sa2 -b? (—1+V)) —4aby
B
%+§a(1+4v) —4aby g(stf -a*(-1+v))
ﬁ—i+z(—7+2v) 2[—£+b+4by] —4—bz+7a(—1+v)
b a 5 5 b a
i[—%+b+4bw] %(SaZ +2b° (—1+v)) 0
E,Ea(,nv) 0 %(mbZ +at(-1+v))

5a
2(5a° +b* (-1+
_ ( aisb( V)) %(Sal—bz(—lﬂz)) 0
2(56° +a° (-1+
_7( Z ( V)) 0 %(sz —-a’ (—1+v))
a
2 2 2 2
B A Y Hran] 2o
2
2[-Si+b+4va i(5az+ztf(—1+v)) 0
5 b 15
ap’ 4
—— a1y 0 E(lobz+az(—1+v))
4(a* +b* 2 2
(‘;sz )+§(7 ) —%—%(b+4bv) —%—%a(luv)
40> 2 16
—T—f(b+4bv) E(Sa,2 —b*(-1+v)) 4abv
ap’ 16
- za(t+a) 4abv E(5bz -a*(-1+v))
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Raspodela deformacijskih velicina v polju KE
€ = {Kx Ky Zny}T = Bd

= Raspodela sila v presecima
0o = {Mx My Mxy}T = DBd = Sd S =DB

= Vektor ekvivalentnog opterecenja

Q= fa fb N"q,(x,y)dxdy

-b

= Ako po povrsini KE deluje jednako raspodelijeno opterecenje q,
vektor ekvivalentnog opterecenja glasi

balbalb
3

T — ab{
Q" =gq,ab,1 3 3




Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Ako je pravougaona plocCa proizvoljno orijentisana u
globalnom Dekartovom koordinathom sistemu XY

T, 0 0 0] * ' *
0 T, 0 0 10 0 | D
0 0 T, 0 T; =10 cosa sinal, i =1,2,3,4 NS

0 0 0 T, 0 —sina cosa

T =

= Momenti savijanja M, i M, menjaju se linearno duz osa x iy
= Moment forzije M,, menja se po paraboli

= Raspodela pomeranja duz ivice KE opisana je funkcijom
treceg stepena i moze jednoznacno da se odredi na osnovu
4 stepena slobode u Cvorovima na krajevima posmatrane
ivice (pomeranje i obrtanje u svakom od Ccvorova na
krajevima posmatrane ivice)

= Duz ivica KE jednoznacno su opisani i prvi izvodi (obrtanja) po
koordinati u pravcu posmatrane ivice




Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Prviizvodi po koordinati upravno na posmatranu ivicu, koji se
menjaju po funkciji treceg stepena, ne mogu jednoznacno da
se odrede jer su na raspolaganju samo dva stepena slobode u
cvorovima na krajevima posmatrane ivice, odnosno npr. za
Ivicu sa koordinatom x=-a na raspolaganju su obrtanja u
cvorovima 114, 1. @, 1 @y,

=S obzirom na prethodno, KE koji ima 12 stepeni slobode spada
U grupu nekonformnih jer ne ispunjava zahtevani C'! kontinuitet

= Nepotpunost polinoma funkcije pomeranja usporava
konvergenciju resenja pa je ovo jos jedan nedostatak

= Konvergencija resenja moze da se postigne jer su ispunjeni
uslovi za konvergenciju reSenja nekonformnih konacnih
elemenata (dokazuje se patch testom)

= KE su uveli Adini, Clough i Melosh pa se naziva ACM element
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Funkcija pomeranja moze da se prikaze i u prirodnim
koordinatama
w(&n) = ag + ax€ + azn + a,8? + asén + agn® + a8 + agéPn + agén® + ajon® + 1830 + aén?
= gde su veze izmedu Dekartovih i prirodnih koordinata

_x _Y
f - a' 77 - b
= Uglovi obrtanja odreduju se na sledeci nacin
ow 1ow ow  low

Y9y Tbhoay YT Tox T ado¢

= Koristeci prirodne koordinate do IF dolazi se analognim
postupkom kao i kod primene Dekartovih koordinata

[+ DA +nm) (2 + 68 +mim — &% —n%)
Nf¢m) =3 b(1 + &)+ M0 = 1) , i=1234
—a(& + )& - 1A +nm)
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca

= Matrica B

1 902 1 9% 2 02
a2 0&%2 b2on? abdéon

T
B=D,N = -{ } INCE, )]

= Matrica krutosti i vektor ekvivalentnog optereéenja

1 1 1

1
k= j j BT (¢, n)DB(E, 1) detjdédn Q= j ] NT (&, m)q(&, ) detdédn
-1 -1 -1

-1

dx 0y]
_|9§ 9| _a 0O _

= 10x 3% _[o b]’ det] = ab
dn  On.
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca. Primer
= Podaci: jednako raspodeljeno opterecenje g, = 10 kN/m?,

modul elasticnosti E = 210-10¢ kPa, Poasonov koeficijent
v=0,3, rasponlL=1,0mideblinah=001m
) L

4 » X

/ 11 lli’ / Uklestena kvadratna ploca

Y Zv

= Varijanta A

0sa




28.8.2025.

teorija ploca. Primer

= Varijanta A

Kaada =Sq =Pa +Qq

(1)* (1)*
ki wi=Q;
1 2 11
42,24 1,88 --- 4,28
- X 1,52 -+ 0,62
E wo
sim. 1,52

12
—-1,12
0

0,30
1,52

OMKE 25

Pravougaoni KE sa 12 SS. Klasicna

1
2

11

12.

(4

2,
0"’ \g\\

1/4 1 4

Wi = Pax= Qs =0 ' W3 = @3 =(3,=0

12x12

Svojstvene vrednosti matrice krutosti

K
{741 510 510 13 10 08 08 07 05 0 0 0}
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca. Primer

&¥

0%%&
78
//;)\&
= Vqrijqntq A __(ls_a__‘fix_iiply=0]_ :/AZL/4 /é L/42 > W25= ‘p2x=(p2y=0
simetrije LAM/'M/ 1« @ 6 /| Pax
Q1 YW1 Py vw, ,
K L/4 1 4
(D= _ (1 _ A w1 3 8
k1,1 - k1,1 - 42,24L_2 12 (p4x/ 9 P3x
Pay YWa XY Q3 YW3
LZ 10 Z, Wy 7
W _ A _ 4 W = Pay = ay = 0 W3 = 3y = 3, = 0
1 1 16
4
qL* qL

Wy =wp = 0,001479647 = 0,7694 mm Wi, tatno = 0,001267 = 0,6552 mm

L4
d(1>*=d(1>=q7{0,00147964 0000 00 O0OTUO0OTO0OO0 07

M,
My + = DBA® = sdW

M,y
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca. Primer

o"?;,’&\\e'
S
T w=@,=0 ‘// L/4 L L/4 - - —
= Varijanta A P GG Waie S w ek Bl Rl
simetrije LAM/'M/ Oy D Wx
P1y YW1 Py vw, ,
. . . . L/4 1 4
Momenti savijanja M, ; IM, ; u Cvoru 2/ .. 3/ e
1 (sredina raspona plocCe) iznose 12 “’“/ o | ¥
(»D4y1 Wy y 2w P3y 7W3
M 1 00462 0462 Wi = Pax = Pay =0 ' W3 = @3 =3, =0
Uy} = {o0as2f 12 = {0462} KNm/m
M, 4 0,0462 0,462

My 1 tagno = My 1 tatno = 0,0231¢gL* = 0,231 kNm/m

Moment savijanja M,, U Cvoru 2
(sredina uklestene ivice; x = L/4), iznosi

M, , = —0,0355¢qL2 = —0,355 kNm/m

My 2 tatno = My 4 tatno = —0,0513¢gL* = —0,513 kNm/m
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Pravougaoni KE sa 12 SS. Klasicna
teorija ploca. Primer .....-o .. (i

(1,]2-,3) (41516) (7I§19) (piX (p,'
(piy I W;

(piy

= Varijanta B

= Sa ciliem povecanja facnosti
reSenja cetvrtina plocCe je
diskretizovana sa 4 KE oblika
kvadrata

~N

8 9
(19,20,21) w;=@ix=@j,=0

Redosled brojeva c<&vorova, vodeci raCuna da se korisfi
pravougaoni element koji ima 12 stepeni slobode, glasi:

e konacni element 1: 1, 2, 51 4,

e konacni element 2: 2, 3, 61 5, : : : : :
e konacni element3:4,5,8i7,i BI’OJGVI OkTIVﬂIh s‘repenl
e konacni element 4: 5, 6, 9 i 8. slobode (nepoznata

generalisana pomeranja):
1,4,6,10,11,13, 14115

Redosled brojeva stepeni slobode (w;, @y, i ;) glasi:

e konacnielement 1:1,2,3,4,5,6,13, 14, 15,10, 111 12,

e konacnielement 2:4,5,6,7,8,9,16,17, 18,13, 141 15,

e konacni element 3: 10, 11, 12, 13, 14, 15, 22, 23, 24, 19,201 21, i

e konacni element 4: 13, 14, 15, 16, 17, 18, 25, 26, 27, 22, 23 i 24.
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Pravougaoni KE sa 12 SS. Klasicna

teorija ploca. Primer N o o f)

5(13,14,15)

= Varijanta B

8 9
(19,270,21) W= @i=@y=0

1 2 11 12 1 [ 4 5 14 15
3,2492 10,1877 -+ 0,1646 —-0,0431 1 3,2492 10,1877 - 0,1646 —-0,0431 4
Kl = 0,0292 .- 0,0119 0 2 103 K2 = 0,0292 .- 10,0119 0 5 103
sim. 0,0292 0,0058 11 sim. 0,0292 0,0058 14
0,0292 12117412 | 0,0292 15117412
10 11 20 21 1 [ 13 14 23 24
3,2492 10,1877 - 0,1646 —0,0431 10 3,2492 10,1877 - 0,1646 —0,0431 13
K3 = 0,0292 -+ 0,0119 0 11 103 Kt = 0,0292 -+ 0,0119 0 14 .103
sim. 0,0292 0,0058 20 sim. 0,0292 0,0058 23
0,0292 21117412 | 0,0292 24117412
1 4 14 15
3,2492 -—-1,4031 - 0,0662 —-0,0662 1
Ky, = 6,4985 0,3:292 O 4 103
sim. 0,1169 0 14
0,1169 15154
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Pravougaoni KE sa 12 SS. Klasicna

teorija ploca. Primer g

5(13,14,15)

= Varijanta B

(19,270,21) S 9 W= @i=@y=0
(10,1563 1) (10,1563 4  0,7297 1)
) 0,0065 2 , 0,0065 5 0,4359 4
Q=+ : Py Qf =4 : S
—0,0065 11 —0,0065 14 8'322 411 2’1326 6
\—0,0065 12) \—0,0065 15J Q, =5, = 2, ) d =K:ls = ! 0,4359 10> .10 3 m
(0,1563 10 (0,1563 13) a=%a= 0 4 a aa=a —-2,1366 11
0,0065 11 0,0065 14 Is 02612 13
Q=4 ProQt={ P 0 ox —~1,3030 14
—0,0065 20 —0,0065 23 ’
(—0,0065 21) (—0,0065 24 \ 1,3030 15/

wy; = 0,7297 mm

W1, tatgno = 0,6552 mm

Komentari:

. - . veraira <noi v . v,
Rese.njo za ugib korj ergiraju Ifc tfacnoj vednosti sc"rz ) ) P e
gornje strane (u opstem sluC€aju (metoda pomeranja) Mreza cele ploce (4 KE) | (16 KE) | (64 KE) | (256 KE) | (1024 KE)
reSenja koja su odredena sa nekonformnim konacnim
elementima mogu dovse nadu sa gornje ili donje Ugib srelcz)l_r;e CHEUE 07404 07297 06781 06631 0.6593
strane u odnosu na taéno (hemonotona x10° [m]
konvergencija)) Greska v odnosu na

. Povgco.n'J.em' broja konovcnlhelemeno’ro (progvuscenje ta&no resenje [%] 174 | 1.4 [ 35 [P 0.6
mreze) i/ili primenom slozenijih elemenata moze da se

postigne konvergencija resenja ka tacnom



Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= Ako se u svakom cvoru pravougaonog KE kojiima 12 stepeni
slobode uvede dodatni stepen slobode, 1. mesoviti parcijalni
izvod, dobija se konformni (zadovoljen C'! kontinuitet)
pravougaoni KE koji ima 16 stepeni slobode. Ovagj element
uveli su Bogner, Fox i Schmit pa se naziva BFS element

= Osnovne nepoznate u cvorovima KE su generalisana
pomeranja

0°w
df ={d, d, d; d,} d{:{Wi Pix  Piy (M)l}, i =12,34

= Raspodela pomeranja u polju KE definisana je nepotpunim
polinomom cCetvrtog stepena (bikubna interpolacija)

W= a; + a,x + agy + a,x* + asxy + agy? +
+ a;x3 + agx?y + agxy? + ajoy> + a; 1 x3y + ax%y? +
+ a3xy3 + agx3y? + a;sx?y3 + agx3y3



Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= Prviizvodi po koordinati upravno na posmatranu ivicu, koji se
menjaju po funkciji treceg stepena, mogu jednoznacno da se
odrede jer su na raspolaganju po dva stepena slobode u
cvorovima na krajevima posmatrane ivice

= |F odreduju se analognim postupkom kao i kod elementa sa
12 stepeni slobode

= Raspodela pomeranja u polju KE izrazena preko prirodnih
koordinata glasi

W=a; +ay§+azn+ a,&% + asén + agn? +
+ a7 + agé?n + aoén® + ayon® + a1 830 + a6 0% +
+ a3 + a14830% + a5E°0° + a168373

u=Aa->w=|[1 & n & & n? & &

251
&n? nd &En &n* &P &n* & 53773]{ }

A16
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Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= /a odredivanje IF potrebno je odrediti parcijalne izvode po
koordinatama x i y i mesoviti parcijalni izvod

ow _1ow 1 2 2 3 2 2 3 222 223
Px = E = Z% = Z(a3 + asé + 2aen + agé” + 2a9né + 3a10n° + a11§° +2a1518° + 3130 E + 2a14m8° + 3a15n°E° + 3a,6n7E°)

a

1 1
¢x=5/0 0.1 0 & 27 0 §22&n 3n* &3 28%n 3&n* 28%n 3&4? 353772]{ =]
(573

ow 1ow 1 2 2 2 2 3 222 3 32
=———=z= _E(az + 2048 + asn + 3a;8° + 2agné + agn® + 3a11nE° +2a1,m°E + ay3n® + 3a14n°E° + 2a451m°E + 3a161°E7)

by =T T Tdee T

(04

1 1
<py=—5[0 1 0 28 n 0 38 2&pn? 0 3&%n 2a,én* n® 3&*n% 283 352173]{ =]
(573

w1 9*w 1 5 5 5 5 -
xdy = Eafan = E(“s + 2agé + 2a9n + 3a11§° + 4a;né +3ay3n® + 6a14nE* + 6a15m°E + 9a61°E7)

02w 1 @1
=—[0 0 00100 2 2 2 ge2 2 ggzp2)]
2xdy ab[ §2n 0 3&% 4&n 3n* 6&%n 6&n 9517]{“16}

33
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Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= Vektor generalisanih pomeranja cvorova KE moze da se
prikaze na sledeci nacin

d = Ca

= odnosno, supstitucijom koordinata cvorova u prirodnom
koordinatnom sistemu sledi

ab —ab —ab ab - ab —ab —ab ab
0 0 a 0 -« —=3a 2a 3a —3a
0 -—b 0 2b - b —3b —-2b 3b
1|ab ab —ab ab -- 3 -6 —6 9
C=—|: S : s :
ab

ab —ab ab ab -+ —ab —ab ab —ab
0 0 a 0 - —3a —2a 3a -—3a
0 —-b 0 2b -+ —-b =3b 2b -—-3b
L0 0 0 o - 3 6 —6 9 |

[ 4 2b —-2a ab - 4 =2b —2a -—ab]

—-6 —-3b 2a —-ab -+ —6 3b 2a ab

-6 —2b 3a —ab -+ 6 —2b —-3a -—ab

110 0 2a —ab - 0 0 2a ab

cl=—1": : : : DU : : :

16 -3 -3b a —ab -+ 3 —-3b —a -—ab

0 —b 0 —ab - 0 b 0 ab

0 0 a —ab - 0 0 —a —ab

L1 b —-a —ab - -1 b a ab
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35
(] T4
Pravougaoni KE sa 16 SS. Klasicna
[ X } ~
teorija ploca
= Matrica IF
N =AC™! N=[N; N, N3 N,
(12 HN(-1+ 22+ ] —(-1+ M2 +mM(-2+ (1 +§)?
N7 = | PCET+Em2A+m(=1+H*2 +8) NT = L[PG+ +m (=2 + O+ H*
Y16 —a(-1+ 22+ (-1+ A+ D) 216 —a(-1+ M2+ (-1+H(1 + &)?
Lab(=1+m)*(A+ ) (—1+ &)1 +&)] Lab(=1+m*(A+ (-1 + (1 + )2
[ (24 )@ +n*(—2+HA+8)? ] (—(=2+nDA+n*(-1+8)22+ 9
NT = 1|1 EM@+mA(=2 + A+ 9)? NT = 1| BT @A+ X2+ )
16| a2+ A +M2(-1+H(1 +§)? Y16 a(-2+ A+ A1+ 21+
Lab(—1+ (A +m2(—1+ A + §)2 lab(—1+ M)A +n2(-1+ 8?1 +§)
CA©f) 1 1
NT bfl(f)gl(r]) = 1234 fi(f)zz(2+3fi€_fi€3)' gi(f)=z(—fi—f+fifz+f3)
| ) L= 1,4,5, 1 1
' —ag;(&)fi(n) fi(m) =Z(2+3nm—nm3), 9:(m) =Z(—m—n+mn2+n3)
Llabg;(£)g;(m)]
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36

Pravougaoni KE sa 16 SS. Klasicna

teorija ploca

_3@=3n+n)¢

_3b(=1+m*A+n)

(-1+m*C+m (=143

8a? 8a? 8a
p=| _3m2=38+8) (14314922 +E) 3an(=1+§*(1+¢)
8b? 8b 8b?

91+ nD(=1487) 3(=1+mA+3n)(=1+8%) 3(=1+7)(-1+HA+39)

= Matrica B

8ab

b1+ 2+ m)(=1+39)

8a

32-3n+n)¢

8b

3b(=1+m)?*(1+n)¢

8a 8a? 8a?
_a(=1+3n 1+ H*A+ ) M2+HA+H? (F1+3)(=2+HA+)?
8b 8b2 8b

1
~3 1+mA+3m(-1+H(1+38)

(-1+m*C+m@A+39)

9I-1+n)(-1+¢3 3(-1+mA+3n(-1+¢?)

8ab

8a
3an(-1+ &)1 +&)?

8b?

b1+ ) +39)

8a

C3(=2+m@+n*%

3(=1+7)A+8(=1+38) 1

8b

3b(-1+mA +n)2¢
8a?
A +3m(—2+8)(1+¢§)?
8b

31+mM=1+3M(=1+¢H)  3(-1+7*)A+8(=1+39)

8a 8a?
_a(=1+3n(-1+H +§? (=248 +¢)?
8b 82 .
9(-1+7)(=1+89)

—5(CLEMA+3NA+H-1+30) ~ o

=2+ +m2(1+38)
- 8a
3an(—1+ &)1 +¢)?
B 8h2

8a

3(=2+mA+m3E

8b

_3b(=1+mA+n?*

8a?
3n(2 -3¢ +¢3)
8h2
9(-1+7nH)(-1+¢?)

8a?
_@+3m(-1+9%2+9)
8b

_b(=1+m 1 +m*(1+39)
8a

a(1437)(-1+ 81 +¢)?
B 8b

1
—5(1 +M(=1+3nA+H(-1+3%)

=2+ +m3(-1+3¢)
h 8a
3an(—1+8)%*(1+¢)
- 8h2

30 +m143m(=1+48Y) 3(-1+7*)(=1+ 9 +39)

8ab

8a

8b

b=+ m(+A(-1+38)

8a

a(l+3m)(=1+ 921+

8b

M1+ 31+ (1430
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Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= Matrica krutosti
1 1

k= ] f BT (¢, 1)DB(E, 1) detjdédn

175(4 a?b?

E 19507  55b° +21(b + 5bv)
ab 175 v

____[ 65(a44—b4)

kl 2_k2 1=

b a?
e K 11a® 39b% 3
1= T ab| 35h2 35a 25
K [11a® 11b3

. _
_ j— _ —_— 1
K14 = Ka1 =05 355 1 354 150 a(b + Ob")_

a(1-+-5v)-

itd. (Metoda konacnih elemenata, deo ll)




Pravougaoni KE sa 16 SS. Klasicna
teorija ploca

= Vektor ekvivalentnog optereé¢enja Q odreduju se analognim
postupkom kao i kod KE sa 12 stepeni slobode

= U slu€aju jednako raspodelienog opterecenja g, vektor
ekvivalentnog opterecenja glasi

b a ab b a
T=g,ab{1 = -2 = 1 = = ~—
O =4 { 3 3 9 3 3

ab

ab b a ab}
9

1 —— —=— =

9 -~ 3 3 9

w| &
wla

1 -

= Primenom konformnih KE, sa povecanjem broja stepeni
slobode modela (proguscivanje mreze) tacnom resenju za
pomeranja monotono se prilazi sa donje sfrane. Generalno,
konvergencija resenja odredenih primenom konformnih KE
bolja je nego kod resenja odredenih nekonformnim KE
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Rajsner-Mindlinova teorija savijanja
ploca

= Uzima se u obzir uticqj transverzalnih sila na deformaciju
klizanja

= Polazi se od pretpostavke da su pomeranja (ugibi) i ukupne
rotacije normala poprecnih preseka medusobno nezavisne

veliCine
= CO kontinuitet
= Obrtanje viakna

0 — dw s g — ow <
x—a'ﬂpx y_ay+(p3’ h/25 B >
v X, u
= gde su uglovi rotacije normale
na srednju ravan aw/ox i dw/dy, W
a ¢’ i, rotacije vlakana usled —

transverzalnih sila ~4
w |
\/\N;dw/dx

®x
Z, W~ 0
A~——normala

y,v




28.8.2025. OMKE 40

Rajsner-Mindlinova teorija savijanja
ploca

= Komponente pomeranja u i v proizvoljne tacke unutar ploce

glase
ow < ow <
u= U(X,y,Z) = _Zex(xJY) =—Z (E"’ (px> v = U(X,y,Z) = _Zgy(X;y) = —Z (E + (Py>
= [a sve tacke koje se nalaze na normali na srednju povrs
(e, = ow/oz = 0) pomeranje w glasi
w=w(xvy,2z)=w(x7y)

= Veze izmedu deformacije | pomeranja mogu da se prikazu u

matricnom obliku Coau 00, 1
ox “ox
dv a0,
3 = —Z =
gx dy dy
Y ou Jv 26, 00,
Vxy =<a—+a—}=<—z a_+a_ ;
Vyz . w w_
3z ' ox ax O
av_kaw adw
\dz ady) \ Eﬂ;__gy J
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Rajsner-Mindlinova teorija savijanja
ploca

= Definise se vektor k (deformacije usled savijanja, tj. promene
krivina i torzije) i vektor y (deformacije usled smicanja ili

klizanja)
( 06, )
_g (Ow )
y — Py ox
=1 v V={—5§}‘<a_w_9>
B <69x 4 69y> \Jy Y )
. \dy 0x /)

= Sada se moze uspostaviti veza

gx
el {sz} _
y Vyz) =Y

Vxy
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Rajsner-Mindlinova teorija savijanja
ploca

= Veza izmedu deformacije i napona glasi

r E Ev 0
1—v2 1-—v2
Ev E
Oy T2 142 0 0 Ex
i 0 0 £ .
= Deg - {Tx = Vx
R P 21 +v) s Vo
i 2(1 +v) &
vV
0 ) E
| 2(1+v).
= Sile u presecima mogu da se prikazu u sledecem obliku
1 v 0
f%’” oo B v1 o
M Y D, K -, o 1=
{T}zM;{xW:[ DJ{Y} i 2
Xz Eh Gh
\TyZJ DS = [1 0 e 1 O
2k(1+w)lo 117 klo 1
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Rajsner-Mindlinova teorija savijanja
ploca

= Potencijalna energija deformacije

1
U= Ef(MxKx + Myky, + Myykyy + T3 + Tygof,)dA
A
1 T T
U= > (k'Dyxk + vy Dsy)dA
A

= Prethodni izraz razlikuje se od izraza u klasicnoj teoriji savijanja
ploCa za drugi sabirak koji predstavlja udeo transverzalnih sila u

potencijalnoj energiji deformacije
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Geometrija i raspodela pomeranja opisuju se istim IF

Ni w; k
Ni le} = 2 Nidi
Ni eiy i=1

k

{§}=Z[’“ m[e {}Z

i=1
= gde je k ukupan broj cvorova konachog elementa, N; je matrica

interpolacionih funkcija i-tog Cvorai d; je vektor generalisanih
pomeranja i-tog cvora

= Matrica krutosti

k = f(BZD,,Bb + BID,B;)dA
A

k;; = j(BZiDbBbj +BIDsB;;)dA, i,j=123,...k
A

= gde prvi deo predstavlja krutost na savijanje, a drugi krutost na
smicanje
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Veza izmedu vektora promene krivina i torzije u proizvoljnoj
tacki KE i vektora generalisanin pomeranja u cvorovima glasi

(06 ) [ aN;
k dx 0 T ox
_ 9%y 0 0 aN; ]
Kzszidi K= ay [ By; = o R L
=1 00, 00, oN; dN;
. (W W)J 3y  ox

= Veza izmedu vektora deformacije klizanja u proizvoljnoj tacki
KE i vektora generalisanih pomeranja u cvorovima glasi

: Mo M N 0
(el _Joax ™ Cax T o
Y= BSidi Y= {—q;;} ~Yow Bs; = ON; i=123,...,k
Y Hy - 0 _Ni
i=1 dy oy
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Matrice B, i B, za konacni element mogu da se prikazu na
sledeci nacin

B, = [By1 Bpz -+ Byl
B; = [Bs1 Bsz -+ Bg]

= Matrica interpolacionih funkcija za KE
N=|[N; N - Ngj

= Vektor generalisanih pomeranja za KE
d={d; d; - di}’

= S obzirom na to da su interpolacione funkcije N; zavisne od
prirodnih koordinata ¢ i n sledi da je

(ON; (ON;) dx  0dy]

) d0x , — ]_1< af af af
dN; dN; dx Oy

\ 0y J L on ) _% %_

Y
—
Il
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Matrica krutosti (elementi mogu da se odrede numerickom
integracijom)
1 1 1 1

k = j JBZDbBbdet]dEdn + J fBSTDSBSdet]dEdn

-1 -1 -1 -1
= Vektor ekvivalentnog opterecenja i-tog ¢vora

1 1 T
Q; = {j ]Niqzdet]dfdn 0 0} , i=123,...,k
1

-1

= Vektor ekvivalentnog opterecenja (elementi mogu da se
odrede numeriCkom integracijom)

Q={Q1 Q - Qk}T

= |[F izvedene za izoparametarske KE mogu da se koriste i u ovom
sluCaju (npr. za cetvorougaoni KE)



Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Prikazani KE osetljiv je na tzv. shear-locking efekat koji je
izrazen kod elemenata sa nizim stepenom interpolacije. Kod
tankinh ploca pri tfacnoj integraciji matrice krutosti dobijaju se
previse kruti KE zbog prevelikog uc¢esca deformacije smicanja
U ukupnoj energiji deformacije, sto je posledica medusobne
nezavisnosti polja pomeranja i polja obrtanja

= Jedan od najjednostavnijin nacina za resavanje prethodnog
problema je selektivna integracija kod koje se tacnha
numericka integracija primenjuje na deo koji potice od
savijanja, a nizired numericke integracije na deo matrice
krutosti koji potice od klizanja. Takode, vrlo jednostavan nacin
eleminacije shear-locking efekta je redukovana integracija
kod koje se primenjuje nizi red numericke integracije na deo
maftrice krutosti za savijanje i smicanje. Odgovarajucim
izborom reda integracije mogu da se dobiju resenja
zadovoljavajuce tacnosti



Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca

= Primenom selektivne i redukovane integracije moze da se dobije
veci broj nultih svojstvenih vrednosti (nultih energetskinh oblika) od
broja stepeni slobode KE kao krutog tela (test svojstvenih
vrednosti). Elementi sa suvisnim nultim energetskim oblicima mogu
da dovedu do nerealnih resenja

= Pored testa svojstvenih vrednosti KE i grupa KE treba da zadovolje
i tzv. patch testove (pri odredenim uslovima mora da se obezbedi
stanje konstantne deformacije u KE i sistemu KE). Pri patch
testovima moze da se bira takvo polje pomeranja koje odgovara
trazenom stanju konstantne deformacije (zadagju se
odgovarajuca generalisana pomeranja u ¢cvorovima na konturi),
a test je ispunjen ako su sracunata pomeranja u poljima KE
jednaka pretpostavljenom polju pomeranja. Umesto ovakvog
pristupa za obezbedivanje stanja konstantne deformacije moze
da se aplicira odgovarajuce opterecenje i uslovi oslanjanja. Test
je ispunjen ako se u poljiima KE dobije odgovarajuce stanje
konstantne deformacije




28.8.2025. OMKE 50

Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

= Podaci su: jednako raspodelijeno opterecenje g, = 10 kN/m?,
modul elasticnosti E = 210-10¢ kPa, Poasonov koeficijent
v=0,3, rasponlL =1,0mideblinah=0,01m

Uklestena kvadratna ploca

0sa

ig--r- < Un
,<_L/0ix 9
ol

Lagranzov KE kojiima 9 ¢vorova
(kvadratne interpolacione funkcije)




Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Matrica krutosti KE odreduje se numerickom integracijom

= Da bi se eliminisao shear-locking efekat primenjuje se
selektivna integracija (za deo matrice krutosti na savijanje red
numericke integracije je 3x3, a za deo matrice krutosti na
smicanje 2x2)

= Pri odredivanju matrice krutosti za savijanje tacke integracije
obelezene su brojevima 1, 2, 3, ... 1 9, i istovremeno su jednake
prirodnim koordinatama

55 _oe _ _538
51:_ ’0,6, 771:_ ’0'6’ Wl 25.5 56_ 016I 776_0; W6_9 9 7777777 ‘7 48 ‘797
55
§2=0, 772=_ 0'6, szg.g 57:—-\'0;61 ’77 :"’0’6’ W7 :;.5
5 6| ¢
55 8.3 ! |
§=06, m=08, wi=gg S0 D6 Wmgg !
5 8 _ _Joe )
¢ =-\0,6, n,=0, wo=goo S =06 L =N06, W =g ! 2 3
°s 77 e e e
® T L4
8 8
£=0,  m=0,  w-_-l



28.8.2025. OMKE 52

Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

= Pri odredivanju matrice krutosti za smicanje tacke integracije
obelezene su brojevima 1, 2, 314, i istovremeno su jednake

prirodnim koordinatama n
S T S T L — ot
g > 2 S Nek n 2
P e R T o B
3 3 773_\/5' _\/5' n —\/5
w,=11, w,=11, w,=1.1, w,=1-1 | ol . o2

= Matrica krutosti za savijanje

0,019231 0,005769 0
D, =|0,005769 0,019231 0 .10°
0 0 0,006731
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Matrica krutosti za savijanje
= Tacka integracije 1

'Ill,b,l (51”71 ) = 01251 JlZ,b,l (51;771 ) =0
Lip1 (51”71)20, Jzz,b,l(fl,n1)=0,25

~ 40 O
de“m (51!771)20r0625 'lb,ll (51'771>:|: 0 4’0:|

0 3,5041 0 - —2,4787 0

B,,=/0 O 35041 -~ 0  -2,4787 k,, =B,.D,B,.det), . w,,
0 3,5041 3,5041 --- —2,4787 -2,4787]

_1 2 26 27 i

0o 0 0 0 !
o 000615 —o 000435 ' —o 000209 | -

T e T e I -10°*

""""""""" ;'i'r'ﬁ""""'"""'"""'"'”6“666’3“65”&“"'6"666'i£é""'"éé
: o . 0,000308 | 2

| i i : J27x27
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Matrica krutosti za savijanje

= Analognim postupkom odreduju se u taCkama integracije 2,
3,4, ...19 matrice krutosti kg ,, Ky, 3. Kp 4. ... 1 Ky 9, respektivno,
nakon cega se njihovim sabiranjem odreduje numericko
resenje dela matrice krutosti na savijanje kg

1 2 26 27
0 0 0 0 1
O 000808 —0 000462 : —O 000556 | 2
kbN e e .10*
""""""""" sim. | 000738 0 |2

0,007385 | 27

127x27
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Matrica krutosti za smicanje

673,077 0 ;
D, = 10
0 673,077

= Tacka intearacije 1

11151(511771)20'25' Iy 51(§1r771)20 det] 5 . 1 |:4;0 0 j|
- - L(E.m)=0,0625  3i(&,m)=
'121,5,1(51'771):01 122,5,1(9&1’771):0;25 1( ' 1) 1( ' 1) O 4,0

~1,9623 -0,2073 0 - -0,4444 O
= k,, =B ,D,B_, det
27

1 -1,9623 0 -0,2073 - 0 -0,4444 | sasts1 CE W
i 1 2 26 27 |
32, 3954 1,7115  ---  3,6687 | 3,6687 | 1
10,1808 i --- | 0, 3876 0 2 .

k N | e . ........... . ........................................... .10

................................ 5|m083100 -
10,8310 | 2

L 127x27
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Matrica krutosti za smicanje

= Analognim postupkom odreduju se u tackama integracije 2,
3. 14 matrice krutosti k; ,, K 5, 1 K; 4, respektivno, nakon cega se
njihovim sabiranjem odreduje numericko resenje dela matrice
krutosti na smicanje k;

1 2 C.. 26 L7

34,9003  1,8697 ---:2,4929 | 2,4929 | 1
10,2077 -~ 10,2077 : 0 2
T s S s S S R -10"
"""""""""""""""""" sm. 13,3238 0 |
13,3238 | »
127x27




Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

= Matrica krutosti konacnog elementa k,, odreduje se
sabiranjem mc:_’rrico krutosti na savijanje i sn_niconje

1 2 P 26 : 27
34,9003 | 1,8697 | ---:2,4929 2,4929 | 1
10,2085  --- i 0,2073 | —0,000556 | 2 .
Ky =Ky 4Ky = | T I R S S| -10
"""""""""""""""" sim. 133312 0 |
: : : i 3,3312 27
Komentar: L : P : 27327

Matrica krutosti k, je pozitivno semidefinitna i ima 4 svojstvene vrednosti jednake nuli, fj. ima 1
suvisni nulti energetski oblik. Ovaj element u kombinaciji sa selektivnom integracijom ima dobro
ponasanje u smislu konvergencije resenja i eliminacije shear-locking efekta ali se pri analizi
savijanja ploca mora sa oprezom primenjivati jer elementi sa suvisnim nultim energetskim
oblicima mogu da dovedu do nerealnih resenja pri odredenim granicnim uslovima (npr.
kvadratna ploca opterecena koncentrisanom silom u jednom uglu sa minimalnim brojem
oslonaca koji spreCavaju pomeranja kao krutog tela). Kod Lagranzovog elementa koji ima ?
cvorova sa zamenjujucim poljem deformacije klizanja izbegava se pojava suvisnog nultog
energetskog oblika i grupa elemenata prolazi patch testove (Teorija savijanja plo¢a — numericke
metode i racunarski programi, Vuksanovi¢ b., Pujevic¢ B., IP ,,Nauka" — Beograd, 1994.)
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Izoparametarski KE. Rajsner-Mindlinova

teorija savijanja ploca. Primer 1 [*$*}
________ o |

= Kvadratna ploca ool
= Vektor ekvivalentnog optereéenja AR
0 15

11111 -

________ |

N

= Elementi vektora ekvivalenthog optrecenja Q, mogu da se
odrede numerickom infegracijom (red 2 x 2)

= U Cvoru |
N, (. )a, (& )detd(&,,m, Jw, =0,129585
N, (&,,7m,)a,(&,.m, )detd(&,, 1, )w, =—0,0347222
N, (&.7,)a, (&1, )detd(&,, 1, )w, =—0,0347222
N, (&.7,)a, (&, 7, )detd(&,,n, )w, =0,00930379



Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca
= Vektor ekvivalentnog opterecenja

= Sabiranjem prethodne Cetiri veliCine odreduje se vrednost u
¢voru 1, odnosno vektor ekvivalentnog opterecenja Qi za
cvor 1 glasi

(0,0694 | 1)

Qi=< 0 2

= Analognim postupkom odreduju se elementi vektora
ekvivalentnog opterecenja za ostale cvorove

= ResSenja za vektor ekvivalentnog opterecenja odredena
analitickom i numeriCckom integracijom medusobno su
jednaka
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

1 13 P 26 27 ] KO,0694 1]
34,9003 | —2,4929 | ---  2,4929 | 2,4929 | 1 5’5}5’5'" 1
toses7 0 eers a7 ol
K,, =] R I S e 10* Q,=S,=9¢ + ¢ >
S S S SRS R S 0 2%
sim 03,3312 0 s e,
| - 13,3312 | » | 0 7 ) a1
L : H H : —18x8
.0,8024 | 1 w; = 0,8024 - 103 m
0,4018 | 13
—2,4004 | 14
................................ _ _3
d =K's = 0'4018 ..... 22 .10 Wl,taéno — 0’6552 | 10 m
o " NeeSe TN 3 4004 | 2
0,2011 | 2
—1,2045 | 26
—1,2045 | 27




Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

= Sa cillem povecanja tacnosti resenja za ugib Cetvrtina ploce
je diskretizovana sa 4 KE oblika kvadrata Cija je duzina
stranice jednaka Cetvrtini raspona ploce

®
21 23 24 25(73,74,75)
(61,62,63) (64,65,66) (67,68,69) (70,71,72)

w=0,=9,=0
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

Redosled brojeva ¢vorova, vodeciracuna da se koristi
Lagranzov element sa 9 ¢vorova, glasi:

e konacnielement1:1,3,13,11,2,8,12,6i7, PO

o  konacnielement2:3,5,15,13, 4,10, 14,819, , w 4% 5,20

e konacnielement3: 11,13, 23,21,12, 18,22, 16117, i ,épaf oA (23, g6 0ge) o)
e konacnielement 4: 13, 15, 25, 23, 14, 20, 24, 181 19. By ¥w,

Redosled brojeva stepeni slobode (w;, 8, i, glasi:

e kona&nielement1:1,2,3,7,8,9,37, 38,39, 31,32, 33, 4,
5, 6,22, 23, 24, 34, 35,36, 16, 17,18, 19, 20 21, (612063 (642266) (675069) (103t72) 2OUBTATS)
e konacnielement?2:7,8,9, 13, 14, 15, 43, 44, 45, 37, 38, 39, w=05,=9,=0
10, 11, 12, 28, 29, 30, 40, 41, 42, 22, 23, 24, 25, 261 27,
e  konadnielement 3: 31, 32, 33, 37, 38, 39, 67, 68, 69, 61, 62,
63, 34, 35, 36, 52, 53, 54, b4, 65, b6, 46, 47, 48, 49, 501 51, i
o  konadnielement 4: 37, 38, 39, 43, 44, 45, 73, 74, 75, 67, 68,
69, 40, 41, 42, 58, 59, 60, 70, 71, 72, 52, 53, 54, 55, 56 i 57.

Brojevi aktivnih stepeni slobode su: 1, 4, 5,7, 8,10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36,
37,38, 39, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56 i 57
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

0,0174
34,9003 10,9348 | --- 11,2464 | 1,2464 | 0
0,0527 : --- : 0,0515 | —0,000556 0
k! =k?>=k*>=k* = ’ : : -10* Q'=Q’=Q*=Q" =
sim. 0,8383 0 0,2778
R I S
44444444 5
1 4 56 57
0,0174 | 1 0,6649 | 1
34,9003 | —2,4929 : --- 0 0 1 O O I (RO N
0,0694 | 4 0,5921 | 4
109,687 : --- 0 0 4 SN . SRR, I ,
K, = : g : 10* Q, =S, = d, =K_S, = : 10
: ' : 0 56 -0,4221 | s6
sim. 0,8383 0 56 Y O
0 57 —0,4221 | 57
0,8383 | 57
_3 Komentar:
w; = 0,6649 - 107° m S obzirom na odnos debljine i

raspona opravdano je usvojiti da se
W1 tatno = 0,6552 - 10_3 m ploca ponasa prema klasicnoj teoriji




Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 1

= Kvadratna ploca

= Ako bi u modelu promenili samo debljinu ploce na vrednost
h =0,1 m tada bi se za ugib sredine raspona ploce dobile
sledece vrednosti:
= tacno resenje klasiCne teorije
* Wy q = 0,0006552 - 1073m
= reSenje odredeno primenom MKE (Rajsner-Mindlinova teorija)
" wyp = 0,0007885 - 1073m

Komenatar:

Razlika izmedu taCnog resenja prema klasicnoj teoriji i reSenja odredenog
primenom MKE (Rajsner-Mindlinova teorija) iznosi priblizno 17% u odnosu na
reSenje odredeno primenom MKE. Bez obzira na malu gresku resenja po MKE
(resenje za ugib sredine raspona konvergira ka vrednosti 0,0007623-103 m)
zakljuCuje se da ponasanje ploce nije u skladu sa klasicnom teorijom. Ovo je
posledica zanemarenja uticaja deformacije klizanja u klasiCnoj teoriji
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 2

= Kruzna ploca

Podaci su: jednako raspodeljeno
opterecenje g, = 10 kN/m?, modul
elasticnosti E =210 GPa, Poasonov
koeficijent v = 0,3, poluprecnik
r=05mideblinah=001m

— — ——
— _—

- w; > /Z. =~ < g
ig-—1- < Uk SPAS ~
x (O 8 N
/ 9 ﬁy = 0 \
(1,23),7" (456) (789 (10,11,12) \ (13,14,15)
_______________________ (19,20,21) > X
I 2 ’
25 (22
%
Q+ (31,32,33)11 '1.2
112 (34,35,36)
N
\(4\0,41,42)14  ol5 10(28,29,30)

| (43,4,45)
19(s5,56,57)

(49,50,51)17 |
-0
v 18(52,53,54) e By
V4 W~
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 2

—_— — ——
P - -

- Wi <
~ b4 //i/—— — I91)1( oc;zjfg\ge \\\
= Kruzna ploca / "I‘/ﬁ 3, 0 N
7 y - \
VYW (1,i,3),/(4,3,5) (7,§,9) (1o,h1,12) \ (513,14,15)

|
( LY, ) (22
|

(
}l2(34,35,36)

®
24) (25,26,27) @

Redosled brojeva cvorova, vodeci racuna o pravilu za

%
-~ e . ~ . \
Lagranzov element koji ima 9 &vorova, glasi: o o+ eraall

10(28,29,30)

1915
. konacnielement1:1,3,13,11,2,8,12,6i7, i | (43,44,45) ¥
e  konacnielement2:3,5,19,13,4,10,16,819, i (49,50,51) (555657)
o konacnielement 3: 11,13, 19, 17,12, 16, 18, 14, 15. % 0,7 0y~
\Ng

Redosled brojeva stepeni slobode (w;, 8, i9;,) glasi:

. konac¢nielement 1:1,2,3,7
. konacnielement2:7,8, 9, 1
. konacni element 3: 31, 32, 3

. 8.9.37,38,39,31,32,33,4,5,6,22,23,24,34,35,36,16, 17,18, 19,201 21,
3. 14,15, 55,56,57,37,38,39,10, 11, 12, 28, 29, 30, 46, 47, 48, 22, 23, 24, 25, 26 127, i
3, 37,38, 39,55, 56, 57, 49, 50, 51, 34, 35, 36, 46, 47, 48, 52, 53, 54, 40, 41, 42, 43, 441 45.

Brojevi aktivnih stepeni slobode: 1, 4, 5,7,8,10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42,
43, 44, 45, 46, 47 i 48.

Komentar:

Matrica krutosti i vektor ekvivalentnog opterecenja odreduju se numerickom integracijom analogno kao u
prethodnom primeru. Da bi se eliminisao shear-locking efekat primenjuje se selektivna integracija. Za deo
matrice krutosti na savijanje red numericke integracije je 3x3, a za deo matrice krutosti na smicanje 2x2
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Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 2

- . T
- Wi > 42 =~
- Kruzna plo¢ g 45 SE TN
ruzna ploca . "I‘/ﬁ 9, PSRN
‘9 /// y - \
/ YYw; (123),7" (456) (789) (10,11,12) \ (13,14,15)
i i (o 2
1 2 20 21 \ simetrije ( )6 |(19’20’21) (22
16,17,18
34,9003 : 0,9348 : --- : 1,2464 1,2464 1 \ \ o @-)I e
0,0527 : --- : 0,0515 : —0,000556 | 2 N
k! = : : : .10 10(28,29,30)
N . : : :
sim. 0,8383 0 20 19¢(55,56,57)
0,8383 | = efey;
L Ja7x27 W=
[ 7 8 26 27 1 i 31 32 44 45 )
32,7638 : 0,9228 | --- : 1,2464 1,2464 7 32,7638 : 0,9640 : --- : 1,2464 1,2464 31
0,0573 i .-- 1 0,0566 | —0,000509 | s 5 0,0573 : --- : 0,0564 | —0,000509 | =2 .
ko, = : : : 100 k= : : : ‘10
sim. 0,8980 | 0,000490 | 26 sim. 0,8954 : 0,000490 | 44
0,8954 27 0,8980 45
= 27x27 = J27x27
0,0174 | 1 0,0190 | 7 0,0190 | a1 - .
444444444444444444444444444444444444444444444444444444444444444444444444444444 1 4 47 48
0 2 0 8 0 32
““““““ sl e R 34,9003 | —2,4929  --- 0 0 .
“““““ O e e e s 109,687 - 0 0 . .
Ql — . . Q2 — . : Q3 — . : Kaa = : 5 : 10
0,2778 | 1 0,2971 | 2 0,2971 | a3 : : . :
“““““““““““““““““““““““““““““““““““““““““““““““““ sim. 0,3836 | 0,000597 | 47
0 20 0 26 0 44
44444444444444444444444444444444444444444444444444444444444444444444 0,3836 | s
0 21 0 27 0 45 L 3ax34
27x1 27x1 27x1




28.8.2025. OMKE 68

Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 2

—_— — ——
— _—

/// W; 7\\
~ ~ //I o ]9"-)( Oc)?/z\\e \\
= Kruzna ploca 7 "I‘/ﬁ{ﬁ} & AN
1y WI

/ ’{9. ////9\ l?}’ = 0 \

/ i (1,2,3),7" (456) (7,89 (10,11,12) \ (13,14,15)
0,0174 | » 10,5056 |« | _osa 1~ 7 3 4 5 X
0,0694 4 0,4438 4 \ simetrije |(19’20’21) (22 g
4444444444444444444444444444 . . \ Q (16,17,18)6 @ 7e

Qa:Sa: : : da:KaaSu: : : 10 \ %“_// |
44444444 S ~0,6672 | 47 N _(40,41,42)14 10(28,29,30)
0 48 —0,6672 | s -
34x1 34x1

19¢s5,56,57)
= (% y =

18(52,53,54)
W = e)(

w; = 0,5056 - 1073 m

qr* s
W1 tatno = 64_K = 0,5078-10"°m

qr* 16 (h\° L
W1 ta¢no,Rajsner—Mindlin = 64_K 1+ ? ; m = 0,5087 -107°m

Komentari:
» Postize se zadovoljavajuca tacnost resenja pri vrlo gruboj mreizi
+ S obzirom na odnos debljine i precnika opravdano je usvojiti da je ponasanje ploce prema klasicnoj teoriji
Poredenjem tacnog resenja za ugib centra ploce odredenog prema klasi¢noj i Rajsner-Mindlinovoj teoriji zakljuCuije se da je

razlika mala (priblizno 0,2% u odnosu na tacno reSenje Rajsner-Mindlinove teorije), 1j. pretpostavka da se ploCa ponasa prema
klasicnoj teoriji je opravdana



K

Izoparametarski KE. Rajsner-Mindlinova
teorija savijanja ploca. Primer 2

—_— — ——
-_— -~ —~

hd e ///I'/__ _ g)’( ot’?éé\\e \\\
= Kruzna ploca . 3<’I‘jax 9, A0 N
= Ako bi u modelu promenili [ .. T MPIse vgo wgm \pas
samo debljinu ploce na \ T S asmame

vrednosth=0,1 mtada bise . _® &=

(
}l2(34,35,36)

Za ugib centra ploce dobile o B0 -
sledece vrednosti y e
w=r

= tacno resenje klasiCne teorije:
= w; o = 0,0005078 - 10™*m

= tacno resenje Rajsner-Mindlinove teorije:
* wyp = 0,0006007 - 10~m

= reSenje po MKE (Rajsner-Mindlinova teorija):
* Wy = 0,0005980 - 10~3m

omentari:
Sada razlika izmedu tacnih reSenja prema klasicnoj i Rajsner-Mindlinovoj teoriji ploca iznosi priblizno 15% u odnosu na reSenje Rajsner-
Mindlinove teorije, 1j. ploCa se ne ponasa prema klasicnoj teoriji, $to se moglo zakljuciti na osnovu odnosa precnika i debljine

» Ugib prema klasi€noj teoriji je manji od tacne vrednosti, a to je posledica zanemarenja uticaja deformacije klizanja.
» Razlika izmedu tacnog reSenja prema Rajsner-Mindlinovoj teorijii reSenja odredenog primenom MKE (Rajsner-Mindlinova teorija), iznosi

priblizno 0,4% u odnosu na tacno reSenje, tj. postize se zadovoljavaju¢a tacnost reSenja pri vrlo gruboj mrezi



Liuske. Ravni konacni elementi

= U okviru linearne teorije kod ravnih KE mogu da se razdvoje
membranske deformacije od deformacija savijanja

= Membranske komponente deformacija zavise samo od
membranskin komponenata pomeranja

= Komponente deformacija od savijanja zavise samo od
pomeranja w upravnog na povrsinu KE

X, U
a) b) T, M,
N, Ny Ty M, I/
YV oz w N,, > m >
M,
Ny / D /

= S obzirom na superpoziciju membranskog naprezanja i
savijanja, matrica krutosti ravnog konacnog elementa
odreduje se superpozicijom matrice krutosti membranskog KE
za ravansko stanje napona i matrice krutosti KE plocCe pri
savijanju




Liuske. Ravni konacni elementi

= Trougaoni KE Cijom superpozicijom se odreduje KE za analizu
juski, odnosno prikazan je KE za analizu ravanskog stanja
napona (CST element sa 6 stepeni slobode) i nekonformni KE
za analizu savijanja ploca sa 9 stepeni slobode

X, U
a) b)
YoV z,w

= KE ima 5 stepeni slobode u svakom Cvoru, tj. ukupno 15 stepeni
slobode pri Cemu rotacija oko normale na povrsinu elementa
(lokalna osa z) nije ukljucena u formulaciju

= S obzirom na to potrebno je dodati stepen slobode, tj. ugao rotacije oko normale na povrsinu KE

= S obzirom na to da ovaj stepen slobode nije uklju€en u formulaciju KE matricu krutosti je potrebno
prosiriti vristama i kolonama koje odgovaraju stepenu slobode @;, (tzv. drilling d.o.f.), pri Cemu ovi
elementi imaju vrednost nula. Stepenu slobode ¢;, odgovara fiktivha komponenta M, u vektoru
ekvivalentnog opterecenja
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Ljuske. Ravni konacni elementi.
Trougaoni KE sa 18 stepeni slobode

= Vektor generalisanih pomeranja i sila u cvorovima KE glase
d={d, d, d,}
diT={ui Vi W, @y @ (Diz}' i=1,2,3
R ={R, R, R}

/’T:{Nix Niy Niz Mix Miy Miz}’ i:1'2'3 5{}’ i
6
= Jednacina KE glasi
kd=Q+R

= Matrica krutosti odreduje se superpozicijom matrice krutosti za
analizu ravanskog stanja napona i matrice krutosti za
savijanje plocCe

k7 k7, k7, gde je k;/m submatrica reda 2x2 kll’1 ktl’2 ki’s gde je k; ? submatrica reda 3x3
m - o - Pn cemu sevoznoke iij odnose b b b Y pri cemu se oznake i ij odnose
k" = k3, k3, kj, na brojeve Cvorova KE, a k> =k, k,, ki, na brojeve &vorova KE, a
o o ” oznaka m odnosi se na . kbl kb' kbl oznaka b odnosi se na stanje
k3,1 k3,2 k3,3 e membransko stanje naprezanja .1 K, ks, savijanja

7~ 19x9



Ljuske. Ravni konacni elementi.
Trougaoni KE sa 18 stepeni slobode

¢vor 1 : ¢vor 2 ¢vor 3
. . |k 0 0k, 0 0Kk, 0 0 ,
L] ' P P X, U
Matrica krutosti | ¢ 0 0 K, 0 0 K, 0w
0 0 0.0 O O0O:0 O O
y ky, 0 0 ki, 0 0k, 0 O
0 k;l O 0 k;z 0 0 ks,3 O ¢vor 2
0O 0 0.0 O 0:0 O0 O
kl, 0 0:kj, 0 0.k, 0 0O
0 ki 0 0 ki, 0 0 ki, Owers
0O 0 0:0 O O0O:0 O O |
(- : : 18x18

Komentari:

Matrica krutosti sadrzi elemente koji imaju vrednost nula u tri vrste i tri kolone koje odgovaraju stepenu slobode
®;,- Ako su U zajedniCkom cvoru spojeni komplanarni elementi zbog nulte krutosti koja odgovara rotaciji oko
ose z lokalnog koordinatnog sistema globalna matrica krutosti sistema KE postaje singularna.

Ovo ima za posledicu potrebu za redukcijom jednacina sistema KE za broj ¢vorova u kojima su spojeni
komplanarni elementi.

Jedan od nacina za reSavanje ovog problema je pridruzivanje tzv. fiktivne rotacione krutosti oko normale na
povrsinu komplanarnih KE, 1j. uz stepene slobode ¢;, u matrici krutosti usvajaju se fiktivne rotacione krutosti Cije
su vrednosti dovoljne da se eliminise singularitet matrice krutosti sistema KE, a da se ne utiCe bitno na tacnost
reSenja.

Dodatno pojednostavljenje je da se, bez obzira na to da li su elementi spojeni u Evoru komplanarni ili ne, svim
KE dodaju fiktivne rotacione krutosti uz stepene slobode ¢,,.

U Zienkiewicz O. C., Taylor R. L., Finite Element Method for Solids and Structural Mechanics, 6th Edition, Elsevier,
2006. i Cook R. D., Malkus D. S., Plesha M. E., Witt R. J., Concepts and Applications of Finite Element Analysis,
John Wiley & Sons, 2002. mogu se naci preporuke.
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Ljuske. Ravni konacni elementi.
Trougaoni KE sa 18 stepeni slobode

= Matrica transformacije

T 0 O
T=|0 T, © ,

0 0 T,

.
S A\l

0 t|
)’W
cos(x,X) cos(x,Y) cos(x,2) N I
t=|cos(y,X) cos(y,Y) cos(y,2Z)
cos(z,X) cos(z,Y) cos(z,2)

= Analogan postupak kao i kod linijskin KE
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Liuske. Ravni konacni elementi

= Analognim postupkom mogu da se izvedu i drugi ravni
konacni elementi za analizu ljuski. Na primer

= Pravougaoni KE Cija se matrica krutosti odreduje superpozicijom
dvodimenzionalnog pravougaonog KE koji ima 8 stepeni slobode
(ravansko stanje napona) i nekonformnog pravougaonog KE koji ima
12 stepeni slobode za analizu savijanja ploca (dodagje se fiktivha
rotaciona krutost oko normale na srednju povrs) dobija se element sa
24 stepena slobode

= lzoparametarski cetvorougaoni KE Cija se matrica krutosti odreduje
superpozicijom izoparametarskog cetvorougaonog KE (ravansko
stanje napona) i proizvoljnog cetvorougaonog KE za analizu
savijanja ploca




Liuske. Ravni konacni elementi

= Kod primene ravnih KE javlja se greska u aproksimaciji
geometrije srednje povrsi tanke ljuske i greska v
aproksimaciji polja osnovnih nepoznatih velicina v KE

= Nezavisnost membranskih deformacija i deformacija usled
savijanja je nedostatak ravnih KE

= Na membranske deformacije pored komponenata pomeranja u i v
utice i komponenta pomeranja w. Povezanost membranskog
naprezanja i naprezanja od savijanja ostvarena je na globalnom
nivou kod susednih KE koji nisu komplanarni. U ovom sluCaju
membranske sile iz jednog elementa izazivaju i savijanje u susednom
elementu, a momentii transverzalne sile iz jednog elementa izazivaju
| membransko naprezanje u susednom elementu. Greska se smanjuje
sa povecanjem broja KE (proguscenje mreze) pri Cemu diskretni
model bolje aproksimira geometriju srednje povrsi ljuske




