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x, u

y, v

z, w

Fz

qbz

qz
mb

h

𝑢 = 𝑢 𝑥, 𝑦, 𝑧 = −𝑧
𝜕𝑤

𝜕𝑥

𝑣 = 𝑣 𝑥, 𝑦, 𝑧 = −𝑧
𝜕𝑤

𝜕𝑦

𝑤 = 𝑤 𝑥, 𝑦, 𝑧 = 𝑤 𝑥, 𝑦

x, u

y, v

z, w

w

dw/dx

h
h/2 .

z

u

𝜀𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
𝜀𝑦 = −𝑧

𝜕2𝑤

𝜕𝑦2
𝜀𝑧 = 0

𝛾𝑦𝑥 = 𝛾𝑥𝑦 = −2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛾𝑧𝑥 = 𝛾𝑥𝑧 = 0 𝛾𝑦𝑧 = 𝛾𝑧𝑦 = 0

𝜎𝑥 =
𝐸

1 − 𝜈2
𝜀𝑥 + 𝜈𝜀𝑦 = −

𝐸𝑧

1 − 𝜈2
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
𝜎𝑦 =

𝐸

1 − 𝜈2
𝜈𝜀𝑥 + 𝜀𝑦 = −

𝐸𝑧

1 − 𝜈2
𝜈
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2

𝜏𝑥𝑦 = 𝜏𝑦𝑥 =
𝐸

2 1 + 𝜈
𝛾𝑥𝑦 = − 1 − 𝜈

𝐸𝑧

1 − 𝜈2
𝜕2𝑤

𝜕𝑥𝜕𝑦
𝜎𝑧 = 0

Normalni naponi σx, σy i smičući naponi τxy = τyx imaju 

linearnu promenu po debljini ploče. Smičući naponi τxz i τyz

ne mogu da se odrede iz konstitutivnih zakona (γxz = γyz = 0) 

ali nisu jednaki nuli i imaju paraboličnu promenu (slično kao i 

u Ojler-Bernulijevoj teoriji savijanja grede)

x, u

y, v z, w

σyτyz
τyx

σx τxz

τxy

h/2
h

dx

dz
z

σy

τyx

τyz

σx

τxy τxz

a) b)



 Sile u presecima

Uslovi ravnoteže
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𝑀𝑥 = න

− Τℎ 2

Τℎ 2

𝜎𝑥𝑧𝑑𝑧 = −
𝐸ℎ3

12 1 − 𝜈2
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
𝑀𝑦 = න

− Τℎ 2

Τℎ 2

𝜎𝑦𝑧𝑑𝑧 = −
𝐸ℎ3

12 1 − 𝜈2
𝜈
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2

𝑇𝑥 = න

− Τℎ 2

Τℎ 2

𝜏𝑥𝑧𝑑𝑧 𝑇𝑦 = න

− Τℎ 2

Τℎ 2

𝜏𝑦𝑧𝑑𝑧 𝑀𝑥𝑦 = 𝑀𝑦𝑥 = න

− Τℎ 2

Τℎ 2

𝜏𝑥𝑦𝑧𝑑𝑧 = −
𝐸ℎ3

12 1 − 𝜈2
1 − 𝜈

𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕𝑇𝑥
𝜕𝑥

+
𝜕𝑇𝑦

𝜕𝑦
+ 𝑞𝑧 = 0

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑦𝑥

𝜕𝑦
− 𝑇𝑥 = 0

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑇𝑦 = 0

x, u

y, v z, w

dx

(My+ 
 My 
 y 

dy)dx

(Myx+ 
 Myx 
 y 

dy)dx
(Ty+ 

 Ty 
 y 

dy)dx

Mydx

MyxdxTydx

(Tx+ 
 Tx 
 x 

dx)dy

(Mxy+ 
 Mxy 
 x 

dx)dy

(Mx+ 
 Mx 
 x 

dx)dy

Mxydy

Txdy
Mxdy

qzdxdy



Uslovi ravnoteže

 Transverzalne sile određuju se iz uslova ravnoteže
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𝜕𝑇𝑥
𝜕𝑥

+
𝜕𝑇𝑦

𝜕𝑦
+ 𝑞𝑧 = 0

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑦𝑥

𝜕𝑦
− 𝑇𝑥 = 0

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑇𝑦 = 0

𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞𝑧

𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
2

𝜕2

𝜕𝑥𝜕𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

= − 𝑞𝑧 𝐃𝑒𝛔 = −𝐪

𝑇𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑦𝑥

𝜕𝑦
= −

𝐸ℎ3

12 1 − 𝜈2
𝜕3𝑤

𝜕𝑥3
+ 𝜈

𝜕3𝑤

𝜕𝑥𝜕𝑦2

𝑇𝑦 =
𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
= −

𝐸ℎ3

12 1 − 𝜈2
𝜕3𝑤

𝜕𝑦3
+ 𝜈

𝜕3𝑤

𝜕𝑥2𝜕𝑦

Transverzalnim silama odgovara parabolična 

raspodela smičućih napona τxz i τyz po visini 

poprečnog preseka ploče (pravougaoni 

poprečni presek jedinične širine i visine h)

𝜏𝑥𝑧 =
3

2ℎ
1 − 4

𝑧

ℎ

2

𝑇𝑥

𝜏𝑦𝑧 =
3

2ℎ
1 − 4

𝑧

ℎ

2

𝑇𝑦

𝐃𝑒 =
𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
2

𝜕2

𝜕𝑥𝜕𝑦

𝛔 =

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

𝐪 = 𝑞𝑧



Veze između deformacije i pomeranja

Veze između napona (sila u presecima) i deformacije 
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𝛆 = 𝐃𝑘𝐮

𝜅𝑥
𝜅𝑦
2𝜅𝑥𝑦

=

− Τ𝜕2 𝜕 𝑥2

− Τ𝜕2 𝜕 𝑦2

−2 Τ𝜕2 𝜕 𝑥𝜕𝑦

𝑤
𝜅𝑥 = −

𝜕2𝑤

𝜕𝑥2
𝜅𝑦 = −

𝜕2𝑤

𝜕𝑦2

2𝜅𝑥𝑦 = −2
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝛋 =

𝜅𝑥
𝜅𝑦
2𝜅𝑥𝑦

𝐃𝑘 = −

Τ𝜕2 𝜕 𝑥2

Τ𝜕2 𝜕 𝑦2

2 Τ𝜕2 𝜕 𝑥𝜕𝑦

𝐮 = 𝑤

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

=
𝐸ℎ3

12 1 − 𝜈2

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

𝜅𝑥
𝜅𝑦
2𝜅𝑥𝑦

𝛔 = 𝐃𝛋

𝐃 =
𝐸ℎ3

12 1 − 𝜈2

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2



Diferencijalna jednačina savijanja
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𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
= −

𝑞𝑧
𝐾

𝐾 =
𝐸ℎ3

12 1 − 𝜈2

𝜕𝑇𝑥
𝜕𝑥

+
𝜕𝑇𝑦

𝜕𝑦
+ 𝑞𝑧 = 0

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑦𝑥

𝜕𝑦
− 𝑇𝑥 = 0

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑇𝑦 = 0

𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞𝑧

𝑀𝑥 = −𝐾
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2

𝑀𝑦 = −𝐾 𝜈
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2

𝑀𝑥𝑦 = 𝑀𝑦𝑥 = −𝐾 1 − 𝜈
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞𝑧



 Prirodni granični uslovi

 Granični uslovi po silama na konturi sa vektorom normale 𝑛 i 
vektorom tangente 𝑡, koja u opštem slučaju može biti krivolinijska, 
zadaju se preko momenta savijanja 𝑀𝑛 i zamenjujuće transverzalne 

sile ത𝑇𝑛 = 𝑇𝑛 +
𝜕𝑀𝑛𝑡

𝜕𝑡

 Za neopterećene slobodne konture ploče kod kojih je x = const. 
granični uslovi su

 Za neopterećene slobodne konture ploče kod kojih je y = const. 
granični uslovi su

Rekapitulacija osnovnih jednačina linearne 

teorije elastičnosti. Savijanje tankih ploča
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𝑀𝑦 = −𝐾 𝜈
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
= 0

𝑀𝑥 = −𝐾
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
= 0 ത𝑇𝑥 = 𝑇𝑥 +

𝜕𝑀𝑥𝑦

𝜕𝑦
= −𝐾

𝜕3𝑤

𝜕𝑥3
+ 2 − 𝜈

𝜕3𝑤

𝜕𝑥𝜕𝑦2
= 0

ത𝑇𝑦 = 𝑇𝑦 +
𝜕𝑀𝑥𝑦

𝜕𝑥
= −𝐾

𝜕3𝑤

𝜕𝑦3
+ 2 − 𝜈

𝜕3𝑤

𝜕𝑥2𝜕𝑦
= 0

U MKE na bazi pomeranja (metoda pomeranja) prirodni 

granični uslovi mogu samo aproksimativno da se zadovolje



 Esencijalni granični uslovi

 Potpuno ukleštena kontura

 vodeći računa da je ugib duž konture jednak nuli

 tj. momenti torzije Mnt jednaki su nuli

Mešoviti granični uslovi

 Slobodno oslonjena ivica

 s obzirom na to da je ugib duž konture jednak nuli

 odnosno 𝑀𝑛 = −𝐾
𝜕2𝑤

𝜕𝑛2
+ 𝜈

𝜕2𝑤

𝜕𝑡2
= 0 ⇒

𝜕2𝑤

𝜕𝑛2
= 0

 Ako je ploča pravougaonog oblika slobodno oslonjena duž svih 
kontura, važi

Rekapitulacija osnovnih jednačina linearne 
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𝑤 = 0
𝜕𝑤

𝜕𝑛
= 0

𝜕𝑤

𝜕𝑡
= 0

𝜕2𝑤

𝜕𝑛𝜕𝑡
= 0

𝑤 = 0 𝑀𝑛 = −𝐾
𝜕2𝑤

𝜕𝑛2
+ 𝜈

𝜕2𝑤

𝜕𝑡2
= 0

𝜕𝑤

𝜕𝑡
=
𝜕2𝑤

𝜕𝑡2
= 0

𝑤 = 0
𝜕2𝑤

𝜕𝑥2
= 0

𝜕2𝑤

𝜕𝑦2
= 0



 Potencijalna energija deformacije

 odnosno koristeći

 sledi

Rekapitulacija osnovnih jednačina linearne 
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𝑈 =
1

2
න

𝐴

𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 𝑑𝐴

𝑈 =
1

2
න

𝐴

𝛋𝑇𝐃𝛋𝑑𝐴

𝛆 = 𝛋 =

𝜅𝑥
𝜅𝑦
2𝜅𝑥𝑦

𝐃 =
𝐸ℎ3

12 1 − 𝜈2

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

𝜅𝑥 = −
𝜕2𝑤

𝜕𝑥2

𝜅𝑦 = −
𝜕2𝑤

𝜕𝑦2

2𝜅𝑥𝑦 = −2
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝛆 = 𝐃𝑘𝐮 𝐃𝑘 = −

Τ𝜕2 𝜕 𝑥2

Τ𝜕2 𝜕 𝑦2

2 Τ𝜕2 𝜕 𝑥𝜕𝑦

𝐮 = 𝑤

𝛔 = 𝐃𝛋 𝛔 =

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦



 Svaki čvor KE ima 3 stepena slobode (translatorno pomeranje 
u pravcu z ose i rotacije oko osa x i y), tj. KE ima ukupno 12 
stepeni slobode

Uglovi obrtanja u čvorovima KE izražavaju se preko 
pomeranja na sledeći način

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča
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x, ξ

y, η 
z, w

a a

b

b

w3

φ3x

φ3y

3

7

8
9

w1

φ1x

φ1y

1

1

2

3

w4

φ4x

φ4y

4

10

11
12

w2

φ2x

φ2y

2

4

5

6

𝐝𝑇 = 𝐝1 𝐝2 𝐝3 𝐝4

𝐝𝑖
𝑇 = 𝑤𝑖 𝜑𝑖𝑥 𝜑𝑖𝑦 , 𝑖 = 1,2,3,4

𝐑𝑇 = 𝐑1 𝐑2 𝐑3 𝐑4

𝐑𝑖
𝑇 = 𝑇𝑖𝑧 𝑀𝑖𝑥 𝑀𝑖𝑦 , 𝑖 = 1,2,3,4

𝜑𝑖𝑥 =
𝜕𝑤

𝜕𝑦
𝑖

𝜑𝑖𝑦 = −
𝜕𝑤

𝜕𝑥
𝑖

𝑖 = 1,2,3,4



 Funkcija pomeranja u polju KE definisana je nepotpunim 
polinomom četvrtog stepena u kome nedostaju tri člana, tj. 
x4, y4 i x2y2, pri čemu je očuvana simetrija

 Raspodela rotacija poprečnih preseka u polju KE

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča
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𝑤 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥
2 + 𝛼5𝑥𝑦 + 𝛼6𝑦

2 + +𝛼7𝑥
3 + 𝛼8𝑥

2𝑦 + 𝛼9𝑥𝑦
2 + 𝛼10𝑦

3 + 𝛼11𝑥
3𝑦 + 𝛼12𝑥𝑦

3

𝐮 = 𝐀𝛂 → 𝑤 = 1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2 𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥3𝑦 𝑥𝑦3
𝛼1
⋮
𝛼12

𝜑𝑥 =
𝜕𝑤

𝜕𝑦
= 𝛼3 + 𝛼5𝑥 + 2𝛼6𝑦 + 𝛼8𝑥

2 + 2𝛼9𝑥𝑦 + 3𝛼10𝑦
2 + 𝛼11𝑥

3 + 3𝛼12𝑥𝑦
2

𝜑𝑥 = 0 0 1 0 𝑥 2𝑦 0 𝑥2 2𝑥𝑦 3𝑦2 𝑥3 3𝑥𝑦2
𝛼1
⋮
𝛼12

𝜑𝑦 = −
𝜕𝑤

𝜕𝑥
= − 𝛼2 + 2𝛼4𝑥 + 𝛼5𝑦 + 3𝛼7𝑥

2 + 2𝛼8𝑥𝑦 + 𝛼9𝑦
2 + 3𝛼11𝑥

2𝑦 + 𝛼12𝑦
3

𝜑𝑦 = 0 −1 0 −2𝑥 −𝑦 0 −3𝑥2 −2𝑥𝑦 −𝑦2 0 −3𝑥2𝑦 −𝑦3
𝛼1
⋮
𝛼12



Vektor generalisanih pomeranja čvorova KE glasi

 Zamenom koordinata čvorova (granični uslovi) sledi

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča

28.8.2025. OMKE 14

𝐝 = 𝐂𝛂

𝐂 =

1 −𝑎 −𝑏 𝑎2 𝑎𝑏 𝑏2 −𝑎3 −𝑎2𝑏 −𝑎𝑏2 −𝑏3 𝑎3𝑏 𝑎𝑏3

0 0 1 0 −𝑎 −2𝑏 0 𝑎2 2𝑎𝑏 3𝑏2 −𝑎3 −3𝑎𝑏2

0 −1 0 2𝑎 𝑏 0 −3𝑎2 −2𝑎𝑏 −𝑏2 0 3𝑎2𝑏 𝑏3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 −𝑎 𝑏 𝑎2 −𝑎𝑏 𝑏2 −𝑎3 𝑎2𝑏 −𝑎𝑏2 𝑏3 −𝑎3𝑏 −𝑎𝑏3

0 0 1 0 −𝑎 2𝑏 0 𝑎2 −2𝑎𝑏 3𝑏2 −𝑎3 −3𝑎𝑏2

0 −1 0 2𝑎 −𝑏 0 3𝑎2 2𝑎𝑏 −𝑏2 0 −3𝑎2𝑏 −𝑏3

𝐂−1 =
1

8𝑎𝑏

2𝑎𝑏 𝑎𝑏2 −𝑎2𝑏 2𝑎𝑏 𝑎𝑏2 𝑎2𝑏 2𝑎𝑏 −𝑎𝑏2 𝑎2𝑏 2𝑎𝑏 −𝑎𝑏2 −𝑎2𝑏
−3𝑏 −𝑏2 𝑎𝑏 3𝑏 𝑏2 𝑎𝑏 3𝑏 −𝑏2 𝑎𝑏 −3𝑏 𝑏2 𝑎𝑏
−3𝑎 −𝑎𝑏 𝑎2 −3𝑎 −𝑎𝑏 −𝑎2 3𝑎 −𝑎𝑏 𝑎2 3𝑎 −𝑎𝑏 −𝑎2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎

𝑏2
𝑎

𝑏
0

𝑎

𝑏2
𝑎

𝑏
0 −

𝑎

𝑏2
𝑎

𝑏
0 −

𝑎

𝑏2
𝑎

𝑏
0

−
1

𝑎2
0

1

𝑎

1

𝑎2
0

1

𝑎
−
1

𝑎2
0 −

1

𝑎

1

𝑎2
0 −

1

𝑎

−
1

𝑏2
−
1

𝑏
0

1

𝑏2
1

𝑏
0 −

1

𝑏2
1

𝑏
0

1

𝑏2
−
1

𝑏
0



Matrica IF

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča

28.8.2025. OMKE 15

𝐍 = 𝐀𝐂−1 𝐍 = 𝐍1 𝐍2 𝐍3 𝐍4

čvor 1

𝐍1
𝑇 =

1

8

−𝑎 + 𝑥 𝑏 − 𝑦 𝑎𝑏2𝑥 + 𝑏2𝑥2 + 𝑎2 −2𝑏2 + 𝑏𝑦 + 𝑦2

𝑎3𝑏3

𝑎 − 𝑥 𝑏 − 𝑦 2 𝑏 + 𝑦

𝑎𝑏2

−
𝑎 − 𝑥 2 𝑎 + 𝑥 𝑏 − 𝑦

𝑎2𝑏

čvor 2

𝐍2
𝑇 =

1

8

𝑎 + 𝑥 𝑏 − 𝑦 𝑎𝑏2𝑥 − 𝑏2𝑥2 + 𝑎2 𝑏 − 𝑦 2𝑏 + 𝑦

𝑎3𝑏3

𝑎 + 𝑥 𝑏 − 𝑦 2 𝑏 + 𝑦

𝑎𝑏2

𝑎 − 𝑥 𝑎 + 𝑥 2 𝑏 − 𝑦

𝑎2𝑏

čvor 3

𝐍3
𝑇 =

1

8

𝑎 + 𝑥 𝑏 + 𝑦 𝑎𝑏2𝑥 − 𝑏2𝑥2 + 𝑎2 2𝑏 − 𝑦 𝑏 + 𝑦

𝑎3𝑏3

−
𝑎 + 𝑥 𝑏 − 𝑦 𝑏 + 𝑦 2

𝑎𝑏2

𝑎 − 𝑥 𝑎 + 𝑥 2 𝑏 + 𝑦

𝑎2𝑏

čvor 4 

𝐍4
𝑇 =

1

8

𝑎 − 𝑥 𝑏 + 𝑦 𝑏2 𝑎 − 𝑥 2𝑎 + 𝑥 + 𝑎2𝑏𝑦 − 𝑎2𝑦2

𝑎3𝑏3

−
𝑎 − 𝑥 𝑏 − 𝑦 𝑏 + 𝑦 2

𝑎𝑏2

−
𝑎 − 𝑥 2 𝑎 + 𝑥 𝑏 + 𝑦

𝑎2𝑏

čvor 1 čvor 2

čvor 3 čvor 4 



Matrica B

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča

28.8.2025. OMKE 16

𝐁 = 𝐃𝑘𝐍 = −

𝜕2𝐍1
𝜕𝑥2

𝜕2𝐍2
𝜕𝑥2

𝜕2𝐍3
𝜕𝑥2

𝜕2𝐍4
𝜕𝑥2

𝜕2𝐍1
𝜕𝑦2

𝜕2𝐍2

𝜕𝑦2
𝜕2𝐍3

𝜕𝑦2
𝜕2𝐍4

𝜕𝑦2

2
𝜕2𝐍1
𝜕𝑥𝜕𝑦

2
𝜕2𝐍2

𝜕𝑥𝜕𝑦
2
𝜕2𝐍3

𝜕𝑥𝜕𝑦
2
𝜕2𝐍4

𝜕𝑥𝜕𝑦
3𝑥12
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

  

  


      







3 2

3 2

2 2 2 2 2

3 3 2 2

3 2

3 2

2 2 2 2 2

3 3 2 2

3

3 3

4 4

3 3

4 4

3 4 3 3 3

4 4 4

3 3

4 4

3 3

4 4

3 4 3 3 3

4 4 4

3 3

4

0

0

0

0

0

x b y a x b y

a b a b

a x y a x b y

ab ab

b x a b y b y b y a x a x

a b ab a b

x b y a x b y

a b a b

a x y a x b y

ab ab

b x a b y b y b y a x a x

a b ab a b

x b y a

a b

B

  

    

       

    

    

       



  


      


  



 

 













     
 




2

3 2

2 2 2 2 2

3 3 2 2

3 2

3 2

2 2 2 2 2

3 3 2 2

4

3 3

4 4

3 4 3 3 3

4 4 4

3 3

4 4

3 3

4 4

3 4 3

0

0

3 3

4

0

4 4

x b y

a b

a x y a x b y

ab ab

b x a b y b y b y a x a x

a b ab a b

x b y a x b y

a b a b

a x y a x b y

ab ab

b x a b y b y b y a x a x

a b ab a b



Matrica krutosti

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča

28.8.2025. OMKE 17

Kolone 1 do 3 Kolone 4 do 6

 

 
     

    
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1 4 4 5 1

5 15
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7 2 4 1

5 5 5

2 2 8
4 5 2 1

5 15

8

5

1

0

4

4

2

a b a b
b b a

b aa b

a
b b a b ab

b

b
a ab b a

a

a b a b
b b a

Eh

a

b ab a

a
b b a b

b

b

a

b

a

k
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       
  
 
 

  
  

  
  

 




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

2 2

4 4 2 2 2 2

2 2

2 2

2 2

2 2

2 2

2 2 2 2

2 2

2
2 2

4
1 10 1

15

5 2 5 1 2 5 12
7 2

5 5 5

2 5 1 4
5 1
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2 5 1 4
5 1
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4 2 2 4 2 2 2
7 2 1 1 4

0

0
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5 5 5

4 2 4
1 10 1

5 15

2

0

b a
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b aa b

a b
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b
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a
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a
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b
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2
2 22 8

1 4 5 2 1
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b
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𝐤 = න

𝑉

𝐁𝑇𝐃𝐁𝑑𝑉 = න

−𝑎

𝑎

න

−𝑏

𝑏

𝐁𝑇𝐃𝐁𝑑𝑥𝑑𝑦
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Kolone 7 do 9 Kolone 10 do 12
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  
  
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
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 



       
   
 
 

  
   

  
  
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  
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5 2 5 1 2 5 12
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7 2 1 1 4
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4 2 4
1 10 1
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2 2 8
1

0

0
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4 5 2
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a b a b b a
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a b
a b

b
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a b a b
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 

 
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      

      

     

 
           

 

 
      
 
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2 2

2
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2
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2

1

4 2 4 2 4 2
7 2 4 1 4

5 5 5
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4 5 1 4
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4 2 16
1 4 4 5 1
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2 4 2 2 5 4 2
7 2 4 1

5 5 5

2 5 8
4 5 2 1

5 1
0

5
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1 10 1
5 15

0a b a

     

    

    

       

  
  

  

  

 

 

 






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      
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2 2 8
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2 5 1 4
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0

0
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0
2 5 1 4
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a b a b
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a b
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b
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b
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 
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 
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


2 22 16
1 4 4 5 1

5 15
a ab b a

𝐤 = න

𝑉

𝐁𝑇𝐃𝐁𝑑𝑉 = න

−𝑎

𝑎

න

−𝑏

𝑏

𝐁𝑇𝐃𝐁𝑑𝑥𝑑𝑦



 Raspodela deformacijskih veličina u polju KE

 Raspodela sila u presecima

Vektor ekvivalentnog opterećenja

 Ako po površini KE deluje jednako raspodeljeno opterećenje qz

vektor ekvivalentnog opterećenja glasi
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𝛆 = 𝜅𝑥 𝜅𝑦 2𝜅𝑥𝑦 𝑇 = 𝐁𝐝

𝛔 = 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦
𝑇 = 𝐃𝐁𝐝 = 𝐒𝐝 𝐒 = 𝐃𝐁

𝐐𝑇 = 𝑞𝑧𝑎𝑏 1
𝑏

3
−
𝑎

3
1

𝑏

3

𝑎

3
1 −

𝑏

3

𝑎

3
1 −

𝑏

3
−
𝑎

3

න

−𝑏

𝑏

𝐍𝑇𝐪𝑧 𝑥, 𝑦 𝑑𝑥𝑑𝑦𝐐 = න

−𝑎

𝑎



Ako je pravougaona ploča proizvoljno orijentisana u 
globalnom Dekartovom koordinatnom sistemu XY

Momenti savijanja Mx i My menjaju se linearno duž osa x i y

Moment torzije Mxy menja se po paraboli

 Raspodela pomeranja duž ivice KE opisana je funkcijom 
trećeg stepena i može jednoznačno da se odredi na osnovu 
4 stepena slobode u čvorovima na krajevima posmatrane 
ivice (pomeranje i obrtanje u svakom od čvorova na 
krajevima posmatrane ivice)

Duž ivica KE jednoznačno su opisani i prvi izvodi (obrtanja) po 
koordinati u pravcu posmatrane ivice

Pravougaoni KE sa 12 SS. Klasična 

teorija ploča

28.8.2025. OMKE 20

X

Y

α 

𝐓 =

𝐓1 0 0 0
0 𝐓2 0 0
0 0 𝐓3 0
0 0 0 𝐓4

𝐓𝑖 =
1 0 0
0 cos𝛼 sin𝛼
0 −sin𝛼 cos𝛼

, 𝑖 = 1,2,3,4



 Prvi izvodi po koordinati upravno na posmatranu ivicu, koji se 
menjaju po funkciji trećeg stepena, ne mogu jednoznačno da 
se odrede jer su na raspolaganju samo dva stepena slobode u 
čvorovima na krajevima posmatrane ivice, odnosno npr. za 
ivicu sa koordinatom x=–a na raspolaganju su obrtanja u 
čvorovima 1 i 4, tj. φ1y i φ4y

 S obzirom na prethodno, KE koji ima 12 stepeni slobode spada 
u grupu nekonformnih jer ne ispunjava zahtevani C1 kontinuitet

Nepotpunost polinoma funkcije pomeranja usporava 
konvergenciju rešenja pa je ovo još jedan nedostatak

 Konvergencija rešenja može da se postigne jer su ispunjeni 
uslovi za konvergenciju rešenja nekonformnih konačnih 
elemenata (dokazuje se patch testom)

 KE su uveli Adini, Clough i Melosh pa se naziva ACM element

Pravougaoni KE sa 12 SS. Klasična 
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 Funkcija pomeranja može da se prikaže i u prirodnim 
koordinatama

 gde su veze između Dekartovih i prirodnih koordinata

Uglovi obrtanja određuju se na sledeći način

 Koristeći prirodne koordinate do IF dolazi se analognim 
postupkom kao i kod primene Dekartovih koordinata

Pravougaoni KE sa 12 SS. Klasična 
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𝑤 𝜉, 𝜂 = 𝛼1 + 𝛼2𝜉 + 𝛼3𝜂 + 𝛼4𝜉
2 + 𝛼5𝜉𝜂 + 𝛼6𝜂

2 + 𝛼7𝜉
3 + 𝛼8𝜉

2𝜂 + 𝛼9𝜉𝜂
2 + 𝛼10𝜂

3 + 𝛼11𝜉
3𝜂 + 𝛼12𝜉𝜂

3

𝜉 =
𝑥

𝑎
, 𝜂 =

𝑦

𝑏

𝜑𝑥 =
𝜕𝑤

𝜕𝑦
=
1

𝑏

𝜕𝑤

𝜕𝜂
𝜑𝑦 = −

𝜕𝑤

𝜕𝑥
= −

1

𝑎

𝜕𝑤

𝜕𝜉

𝐍𝑖
𝑇 𝜉, 𝜂 =

1

8

1 + 𝜉𝑖𝜉 1 + 𝜂𝑖𝜂 2 + 𝜉𝑖𝜉 + 𝜂𝑖𝜂 − 𝜉2 − 𝜂2

𝑏 1 + 𝜉𝑖𝜉 𝜂𝑖 + 𝜂 𝜂2 − 1

−𝑎 𝜉𝑖 + 𝜉 𝜉2 − 1 1 + 𝜂𝑖𝜂

, 𝑖 = 1,2,3,4



Matrica B

Matrica krutosti i vektor ekvivalentnog opterećenja
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𝐁 = 𝐃𝑘𝐍 = −
1

𝑎2
𝜕2

𝜕𝜉2
1

𝑏2
𝜕2

𝜕𝜂2
2

𝑎𝑏

𝜕2

𝜕𝜉𝜕𝜂

𝑇

𝐍 𝜉, 𝜂

𝐉 =

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

=
𝑎 0
0 𝑏

, det𝐉 = 𝑎𝑏

𝐤 = න

−1

1

න

−1

1

𝐁𝑇 𝜉, 𝜂 𝐃𝐁 𝜉, 𝜂 det𝐉𝑑𝜉𝑑𝜂 𝐐 = න

−1

1

න

−1

1

𝐍𝑇 𝜉, 𝜂 𝐪 𝜉, 𝜂 det𝐉𝑑𝜉𝑑𝜂



 Podaci: jednako raspodeljeno opterećenje qz = 10 kN/m2, 
modul elastičnosti E = 210∙106 kPa, Poasonov koeficijent 
ν = 0,3, raspon L = 1,0 m i debljina h = 0,01 m

Varijanta A
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Z

L

L

Y

X
q

Z

L/2

Y

X

x

y z, w

osa
simetrije L/2

L/2

L/2

3

1

4

2

1

Ukleštena kvadratna ploča



Varijanta A
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x

y 
z, w

L/4 L/4

L/4

L/4

w3

φ3x

φ3y

3

7

8
9

w1

φ1x

φ1y

1

1

2

3

w4

φ4x

φ4y

4

10

11
12

w2

φ2x

φ2y

2

4

5

61

φ1x = φ1y = 0 w2 = φ2x = φ2y = 0

w3 = φ3x = φ3y = 0w4 = φ4x = φ4y = 0

osa
simetrije

𝐊𝑎𝑎
∗ 𝐝𝑎

∗ = 𝐒𝑎
∗ = 𝐏𝑎

∗ + 𝐐𝑎
∗

𝒌1,1
ሺ1)∗

𝒘1
∗ = 𝑸1

ሺ1)∗

𝐤 1 =
𝐾

𝐿2

1 2 ⋯ 11 12
42,24 1,88 ⋯ 4,28 −1,12 1

1,52 ⋯ 0,62 0 2
⋱ ⋮ ⋮ ⋮

sim. 1,52 0,30 11
1,52 12 12x12

Svojstvene vrednosti matrice krutosti 

𝐾

𝐿2
74,1 51,0 51,0 1,3 1,0 0,8 0,8 0,7 0,5 0 0 0



Varijanta A
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𝑘1,1
ሺ1)∗

= 𝑘1,1
1
= 42,24

𝐾

𝐿2

𝑄1
ሺ1)∗

= 𝑄1
1
=
𝑞𝐿2

16

𝑤1
∗ = 𝑤1 = 0,00147964

𝑞𝐿4

𝐾
= 0,7694 mm 𝑤1, tačno = 0,00126

𝑞𝐿4

𝐾
= 0,6552 mm

𝐝ሺ1)∗ = 𝐝 1 =
𝑞𝐿4

𝐾
0,00147964 0 0 0 0 0 0 0 0 0 0 0 𝑇

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

= 𝐃𝐁𝐝 1 = 𝐒𝐝 1

x

y 
z, w

L/4 L/4

L/4

L/4

w3

φ3x

φ3y

3

7

8
9

w1

φ1x

φ1y

1

1

2

3

w4

φ4x

φ4y

4

10

11
12

w2

φ2x

φ2y

2

4

5

61

φ1x = φ1y = 0 w2 = φ2x = φ2y = 0

w3 = φ3x = φ3y = 0w4 = φ4x = φ4y = 0

osa
simetrije



Varijanta A
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Momenti savijanja Mx,1 i My,1 u čvoru 

1 (sredina raspona ploče) iznose

x

y 
z, w

L/4 L/4

L/4

L/4

w3

φ3x

φ3y

3

7

8
9

w1

φ1x

φ1y

1

1

2

3

w4

φ4x

φ4y

4

10

11
12

w2

φ2x

φ2y

2

4

5

61

φ1x = φ1y = 0 w2 = φ2x = φ2y = 0

w3 = φ3x = φ3y = 0w4 = φ4x = φ4y = 0

osa
simetrije

𝑀𝑥,1

𝑀𝑦,1
=

0,0462
0,0462

𝑞𝐿2 =
0,462
0,462

kNm/m

𝑀𝑥,1,tačno = 𝑀𝑦,1,tačno = 0,0231𝑞𝐿2 = 0,231 kNm/m

𝑀𝑥,2,tačno = 𝑀𝑦,4,tačno = −0,0513𝑞𝐿2 = −0,513 kNm/m

Moment savijanja Mx,2 u čvoru 2

(sredina ukleštene ivice; x = L/4), iznosi

𝑀𝑥,2 = −0,0355𝑞𝐿2 = −0,355 kNm/m



Varijanta B

 Sa ciljem povećanja tačnosti
rešenja četvrtina ploče je
diskretizovana sa 4 KE oblika
kvadrata
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wi

φix

φiy

i wi

φix 
φiy 

1 2

3 4

(1,2,3)
1

(4,5,6)
2

(10,11,12)4
5(13,14,15)

6(16,17,18)

7
(19,20,21)

8
(22,23,24)

(7,8,9)
3

9
(25,26,27) wi = φix = φiy = 0

φ1x = φ1y = 0 φ2x = 0

φ4y = 0

Redosled brojeva čvorova, vodeći računa da se koristi

pravougaoni element koji ima 12 stepeni slobode, glasi:

 konačni element 1: 1, 2, 5 i 4,

 konačni element 2: 2, 3, 6 i 5,

 konačni element 3: 4, 5, 8 i 7, i

 konačni element 4: 5, 6, 9 i 8.

Redosled brojeva stepeni slobode (wi, φix, i φiy) glasi:

 konačni element 1: 1, 2, 3, 4, 5, 6, 13, 14, 15, 10, 11 i 12,

 konačni element 2: 4, 5, 6, 7, 8, 9, 16, 17, 18, 13, 14 i 15,

 konačni element 3: 10, 11, 12, 13, 14, 15, 22, 23, 24, 19, 20 i 21, i

 konačni element 4: 13, 14, 15, 16, 17, 18, 25, 26, 27, 22, 23 i 24.

Brojevi aktivnih stepeni 

slobode (nepoznata 

generalisana pomeranja): 

1, 4, 6, 10, 11, 13, 14 i 15
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wi

φix

φiy

i wi

φix 
φiy 

1 2

3 4

(1,2,3)
1

(4,5,6)
2

(10,11,12)4
5(13,14,15)

6(16,17,18)

7
(19,20,21)

8
(22,23,24)

(7,8,9)
3

9
(25,26,27) wi = φix = φiy = 0

φ1x = φ1y = 0 φ2x = 0

φ4y = 0

𝐤1 =

1 2 ⋯ 11 12
3,2492 0,1877 ⋯ 0,1646 −0,0431 1

0,0292 ⋯ 0,0119 0 2
⋱ ⋮ ⋮ ⋮

sim. 0,0292 0,0058 11
0,0292 12 12x12

⋅ 103 𝐤2 =

4 5 ⋯ 14 15
3,2492 0,1877 ⋯ 0,1646 −0,0431 4

0,0292 ⋯ 0,0119 0 5
⋱ ⋮ ⋮ ⋮

sim. 0,0292 0,0058 14
0,0292 15 12x12

⋅ 103

𝐤3 =

10 11 ⋯ 20 21
3,2492 0,1877 ⋯ 0,1646 −0,0431 10

0,0292 ⋯ 0,0119 0 11
⋱ ⋮ ⋮ ⋮

sim. 0,0292 0,0058 20
0,0292 21 12x12

⋅ 103 𝐤4 =

13 14 ⋯ 23 24
3,2492 0,1877 ⋯ 0,1646 −0,0431 13

0,0292 ⋯ 0,0119 0 14
⋱ ⋮ ⋮ ⋮

sim. 0,0292 0,0058 23
0,0292 24 12x12

⋅ 103

𝐊𝑎𝑎 =

1 4 ⋯ 14 15
3,2492 −1,4031 ⋯ 0,0662 −0,0662 1

6,4985 ⋯ 0,3292 0 4
⋱ ⋮ ⋮ ⋮

sim. 0,1169 0 14
0,1169 15 8x8

⋅ 103
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𝐐1 =

0,1563 1
0,0065 2

⋮ ⋮
−0,0065 11
−0,0065 12

𝐐2 =

0,1563 4
0,0065 5

⋮ ⋮
−0,0065 14
−0,0065 15

𝐐3 =

0,1563 10
0,0065 11

⋮ ⋮
−0,0065 20
−0,0065 21

𝐐4 =

0,1563 13
0,0065 14

⋮ ⋮
−0,0065 23
−0,0065 24

wi

φix

φiy

i wi

φix 
φiy 

1 2

3 4

(1,2,3)
1

(4,5,6)
2

(10,11,12)4
5(13,14,15)

6(16,17,18)

7
(19,20,21)

8
(22,23,24)

(7,8,9)
3

9
(25,26,27) wi = φix = φiy = 0

φ1x = φ1y = 0 φ2x = 0

φ4y = 0

𝐐𝑎 = 𝐒𝑎 =

0,1563 1
0,3125 4

⋮ ⋮
0 14
0 15 8x1

𝐝𝑎 = 𝐊𝑎𝑎
−1𝐒𝑎 =

0,7297 1
0,4359 4
2,1366 6
0,4359 10
−2,1366 11
0,2612 13
−1,3030 14
1,3030 15

⋅ 10−3 m

𝑤1 = 0,7297 mm

𝑤1, tačno = 0,6552 mm

Mreža cele ploče
2x2

(4 KE)
4x4

(16 KE)
8x8

(64 KE)
16x16

(256 KE)
32x32

(1024 KE)

Ugib sredine raspona 
x10-3 [m]

0,7694 0,7297 0,6781 0,6631 0,6593

Greška u odnosu na
tačno rešenje [%]

17,4 11,4 3,5 1,2 0,6

Komentari:

• Rešenja za ugib konvergiraju ka tačnoj vednosti sa tzv. 

gornje strane (u opštem slučaju (metoda pomeranja) 

rešenja koja su određena sa nekonformnim konačnim 

elementima mogu da se nađu sa gornje ili donje 

strane u odnosu na tačno (nemonotona 

konvergencija))

• Povećanjem broja konačnih elemenata (progušćenje 

mreže) i/ili primenom složenijih elemenata može da se 

postigne konvergencija rešenja ka tačnom



Ako se u svakom čvoru pravougaonog KE koji ima 12 stepeni 
slobode uvede dodatni stepen slobode, tj. mešoviti parcijalni 
izvod, dobija se konformni (zadovoljen C1 kontinuitet) 
pravougaoni KE koji ima 16 stepeni slobode. Ovaj element 
uveli su Bogner, Fox i Schmit pa se naziva BFS element

Osnovne nepoznate u čvorovima KE su generalisana 
pomeranja

 Raspodela pomeranja u polju KE definisana je nepotpunim 
polinomom četvrtog stepena (bikubna interpolacija)

Pravougaoni KE sa 16 SS. Klasična 

teorija ploča
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𝐝𝑇 = 𝐝1 𝐝2 𝐝3 𝐝4 𝐝𝑖
𝑇 = 𝑤𝑖 𝜑𝑖𝑥 𝜑𝑖𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝑖

, 𝑖 = 1,2,3,4

𝑤 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥
2 + 𝛼5𝑥𝑦 + 𝛼6𝑦

2 +

+ 𝛼7𝑥
3 + 𝛼8𝑥

2𝑦 + 𝛼9𝑥𝑦
2 + 𝛼10𝑦

3 + 𝛼11𝑥
3𝑦 + 𝛼12𝑥

2𝑦2 +

+ 𝛼13𝑥𝑦
3 + 𝛼14𝑥

3𝑦2 + 𝛼15𝑥
2𝑦3 + 𝛼16𝑥

3𝑦3



 Prvi izvodi po koordinati upravno na posmatranu ivicu, koji se 
menjaju po funkciji trećeg stepena, mogu jednoznačno da se 
odrede jer su na raspolaganju po dva stepena slobode u 
čvorovima na krajevima posmatrane ivice

 IF određuju se analognim postupkom kao i kod elementa sa 
12 stepeni slobode

 Raspodela pomeranja u polju KE izražena preko prirodnih 
koordinata glasi

Pravougaoni KE sa 16 SS. Klasična 

teorija ploča
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𝑤 = 𝛼1 + 𝛼2𝜉 + 𝛼3𝜂 + 𝛼4𝜉
2 + 𝛼5𝜉𝜂 + 𝛼6𝜂

2 +

+ 𝛼7𝜉
3 + 𝛼8𝜉

2𝜂 + 𝛼9𝜉𝜂
2 + 𝛼10𝜂

3 + 𝛼11𝜉
3𝜂 + 𝛼12𝜉

2𝜂2 +

+ 𝛼13𝜉𝜂
3 + 𝛼14𝜉

3𝜂2 + 𝛼15𝜉
2𝜂3 + 𝛼16𝜉

3𝜂3

𝐮 = 𝐀𝛂 → 𝑤 = ൣ1 𝜉 𝜂 𝜉2 𝜉𝜂 𝜂2 𝜉3 𝜉2𝜂

ሿ𝜉𝜂2 𝜂3 𝜉3𝜂 𝜉2𝜂2 𝜉𝜂3 𝜉3𝜂2 𝜉2𝜂3 𝜉3𝜂3
𝛼1
⋮
𝛼16



 Za određivanje IF potrebno je odrediti parcijalne izvode po 
koordinatama x i y i mešoviti parcijalni izvod

Pravougaoni KE sa 16 SS. Klasična 
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𝜑𝑥 =
𝜕𝑤

𝜕𝑦
=
1

𝑏

𝜕𝑤

𝜕𝜂
=
1

𝑏
ሺ𝛼3 + 𝛼5𝜉 + 2𝛼6𝜂 + 𝛼8𝜉

2 + 2𝛼9𝜂𝜉 + 3𝛼10𝜂
2 + 𝛼11𝜉

3 + )2𝛼12𝜂𝜉
2 + 3𝛼13𝜂

2𝜉 + 2𝛼14𝜂𝜉
3 + 3𝛼15𝜂

2𝜉2 + 3𝛼16𝜂
2𝜉3

𝜑𝑥 =
1

𝑏
൥0 0 1 0 𝜉 2𝜂 0 𝜉2 ሿ2𝜉𝜂 3𝜂2 𝜉3 2𝜉2𝜂 3𝜉𝜂2 2𝜉3𝜂 3𝜉2𝜂2 3𝜉3𝜂2

𝛼1
⋮
𝛼16

𝜑𝑦 = −
𝜕𝑤

𝜕𝑥
= −

1

𝑎

𝜕𝑤

𝜕𝜉
= −

1

𝑎
ሺ𝛼2 + 2𝛼4𝜉 + 𝛼5𝜂 + 3𝛼7𝜉

2 + 2𝛼8𝜂𝜉 + 𝛼9𝜂
2 + 3𝛼11𝜂𝜉

2 + )2𝛼12𝜂
2𝜉 + 𝛼13𝜂

3 + 3𝛼14𝜂
2𝜉2 + 2𝛼15𝜂

3𝜉 + 3𝛼16𝜂
3𝜉2

𝜑𝑦 = −
1

𝑎
ൣ0 1 0 2𝜉 𝜂 0 3𝜉2 2𝜉𝜂 ሿ𝜂2 0 3𝜉2𝜂 2𝛼12𝜉𝜂

2 𝜂3 3𝜉2𝜂2 2𝜉𝜂3 3𝜉2𝜂3
𝛼1
⋮
𝛼16

𝜕2𝑤

𝜕𝑥𝜕𝑦
=

1

𝑎𝑏

𝜕2𝑤

𝜕𝜉𝜕𝜂
=

1

𝑎𝑏
ሺ𝛼5 + 2𝛼8𝜉 + 2𝛼9𝜂 + 3𝛼11𝜉

2 + 4𝛼12𝜂𝜉 + )3𝛼13𝜂
2 + 6𝛼14𝜂𝜉

2 + 6𝛼15𝜂
2𝜉 + 9𝛼16𝜂

2𝜉2

𝜕2𝑤

𝜕𝑥𝜕𝑦
=

1

𝑎𝑏
ൣ0 0 0 0 1 0 0 2𝜉 ሿ2𝜂 0 3𝜉2 4𝜉𝜂 3𝜂2 6𝜉2𝜂 6𝜉𝜂2 9𝜉2𝜂2

𝛼1
⋮
𝛼16



Vektor generalisanih pomeranja čvorova KE može da se 
prikaže na sledeći način

 odnosno, supstitucijom koordinata čvorova  u prirodnom 
koordinatnom sistemu sledi

Pravougaoni KE sa 16 SS. Klasična 

teorija ploča
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𝐝 = 𝐂𝛂

𝐂 =
1

𝑎𝑏

𝑎𝑏 −𝑎𝑏 −𝑎𝑏 𝑎𝑏 ⋯ 𝑎𝑏 −𝑎𝑏 −𝑎𝑏 𝑎𝑏
0 0 𝑎 0 ⋯ −3𝑎 2𝑎 3𝑎 −3𝑎
0 −𝑏 0 2𝑏 ⋯ 𝑏 −3𝑏 −2𝑏 3𝑏
𝑎𝑏 𝑎𝑏 −𝑎𝑏 𝑎𝑏 ⋯ 3 −6 −6 9
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝑎𝑏 −𝑎𝑏 𝑎𝑏 𝑎𝑏 ⋯ −𝑎𝑏 −𝑎𝑏 𝑎𝑏 −𝑎𝑏
0 0 𝑎 0 ⋯ −3𝑎 −2𝑎 3𝑎 −3𝑎
0 −𝑏 0 2𝑏 ⋯ −𝑏 −3𝑏 2𝑏 −3𝑏
0 0 0 0 ⋯ 3 6 −6 9

𝐂−1 =
1

16

4 2𝑏 −2𝑎 𝑎𝑏 ⋯ 4 −2𝑏 −2𝑎 −𝑎𝑏
−6 −3𝑏 2𝑎 −𝑎𝑏 ⋯ −6 3𝑏 2𝑎 𝑎𝑏
−6 −2𝑏 3𝑎 −𝑎𝑏 ⋯ 6 −2𝑏 −3𝑎 −𝑎𝑏
0 0 2𝑎 −𝑎𝑏 ⋯ 0 0 2𝑎 𝑎𝑏
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
−3 −3𝑏 𝑎 −𝑎𝑏 ⋯ 3 −3𝑏 −𝑎 −𝑎𝑏
0 −𝑏 0 −𝑎𝑏 ⋯ 0 𝑏 0 𝑎𝑏
0 0 𝑎 −𝑎𝑏 ⋯ 0 0 −𝑎 −𝑎𝑏
1 𝑏 −𝑎 −𝑎𝑏 ⋯ −1 𝑏 𝑎 𝑎𝑏



Matrica IF
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𝐍 = 𝐀𝐂−1 𝐍 = 𝐍1 𝐍2 𝐍3 𝐍4

𝐍1
𝑇 =

1

16

−1 + 𝜂 2 2 + 𝜂 −1 + 𝜉 2 2 + 𝜉

𝑏 −1 + 𝜂 2 1 + 𝜂 −1 + 𝜉 2 2 + 𝜉

−𝑎 −1 + 𝜂 2 2 + 𝜂 −1 + 𝜉 2 1 + 𝜉

𝑎𝑏 −1 + 𝜂 2 1 + 𝜂 −1 + 𝜉 2 1 + 𝜉

𝐍2
𝑇 =

1

16

− −1 + 𝜂 2 2 + 𝜂 −2 + 𝜉 1 + 𝜉 2

−𝑏 −1 + 𝜂 2 1 + 𝜂 −2 + 𝜉 1 + 𝜉 2

−𝑎 −1 + 𝜂 2 2 + 𝜂 −1 + 𝜉 1 + 𝜉 2

𝑎𝑏 −1 + 𝜂 2 1 + 𝜂 −1 + 𝜉 1 + 𝜉 2

𝐍3
𝑇 =

1

16

−2 + 𝜂 1 + 𝜂 2 −2 + 𝜉 1 + 𝜉 2

−𝑏 −1 + 𝜂 1 + 𝜂 2 −2 + 𝜉 1 + 𝜉 2

𝑎 −2 + 𝜂 1 + 𝜂 2 −1 + 𝜉 1 + 𝜉 2

𝑎𝑏 −1 + 𝜂 1 + 𝜂 2 −1 + 𝜉 1 + 𝜉 2

𝐍4
𝑇 =

1

16

− −2 + 𝜂 1 + 𝜂 2 −1 + 𝜉 2 2 + 𝜉

𝑏 −1 + 𝜂 1 + 𝜂 2 −1 + 𝜉 2 2 + 𝜉

𝑎 −2 + 𝜂 1 + 𝜂 2 −1+ 𝜉 2 1 + 𝜉

𝑎𝑏 −1 + 𝜂 1 + 𝜂 2 −1+ 𝜉 2 1 + 𝜉

𝐍𝑖
𝑇 =

𝑓𝑖 𝜉 𝑓𝑖 𝜂

𝑏𝑓𝑖 𝜉 𝑔𝑖 𝜂

−𝑎𝑔𝑖 𝜉 𝑓𝑖 𝜂

𝑎𝑏𝑔𝑖 𝜉 𝑔𝑖 𝜂

, 𝑖 = 1,2,3,4
𝑓𝑖 𝜉 =

1

4
2 + 3𝜉𝑖𝜉 − 𝜉𝑖𝜉

3 , 𝑔𝑖 𝜉 =
1

4
−𝜉𝑖 − 𝜉 + 𝜉𝑖𝜉

2 + 𝜉3

𝑓𝑖 𝜂 =
1

4
2 + 3𝜂𝑖𝜂 − 𝜂𝑖𝜂

3 , 𝑔𝑖 𝜂 =
1

4
−𝜂𝑖 − 𝜂 + 𝜂𝑖𝜂

2 + 𝜂3



Matrica B

Pravougaoni KE sa 16 SS. Klasična 

teorija ploča

28.8.2025. OMKE 36

𝐁 =

−
3 2− 3𝜂 + 𝜂3 𝜉

8𝑎2
−
3𝑏 −1+ 𝜂 2 1 + 𝜂 𝜉

8𝑎2
−1+ 𝜂 2 2 + 𝜂 −1+ 3𝜉

8𝑎

−
3𝜂 2 − 3𝜉 + 𝜉3

8𝑏2
−

−1+ 3𝜂 −1 + 𝜉 2 2+ 𝜉

8𝑏

3𝑎𝜂 −1+ 𝜉 2 1 + 𝜉

8𝑏2

−
9 −1+ 𝜂2 −1+ 𝜉2

8𝑎𝑏
−
3 −1+ 𝜂 1 + 3𝜂 −1+ 𝜉2

8𝑎

3 −1+ 𝜂2 −1+ 𝜉 1+ 3𝜉

8𝑏

−
𝑏 −1 + 𝜂 2 1 + 𝜂 −1 + 3𝜉

8𝑎

3 2− 3𝜂 + 𝜂3 𝜉

8𝑎2
3𝑏 −1+ 𝜂 2 1 + 𝜂 𝜉

8𝑎2

−
𝑎 −1 + 3𝜂 −1+ 𝜉 2 1 + 𝜉

8𝑏

3𝜂 −2 + 𝜉 1 + 𝜉 2

8𝑏2
−1+ 3𝜂 −2 + 𝜉 1+ 𝜉 2

8𝑏

−
1

8
−1 + 𝜂 1 + 3𝜂 −1+ 𝜉 1 + 3𝜉

9 −1+ 𝜂2 −1+ 𝜉2

8𝑎𝑏

3 −1+ 𝜂 1 + 3𝜂 −1+ 𝜉2

8𝑎

−1 + 𝜂 2 2 + 𝜂 1 + 3𝜉

8𝑎
−
𝑏 −1 + 𝜂 2 1 + 𝜂 1 + 3𝜉

8𝑎
−
3 −2 + 𝜂 1 + 𝜂 2𝜉

8𝑎2

3𝑎𝜂 −1 + 𝜉 1+ 𝜉 2

8𝑏2
−
𝑎 −1 + 3𝜂 −1+ 𝜉 1 + 𝜉 2

8𝑏
−
3𝜂 −2 + 𝜉 1 + 𝜉 2

8𝑏2

3 −1 + 𝜂2 1 + 𝜉 −1 + 3𝜉

8𝑏
−
1

8
−1+ 𝜂 1 + 3𝜂 1+ 𝜉 −1 + 3𝜉 −

9 −1 + 𝜂2 −1+ 𝜉2

8𝑎𝑏

3𝑏 −1 + 𝜂 1 + 𝜂 2𝜉

8𝑎2
−

−2+ 𝜂 1 + 𝜂 2 1 + 3𝜉

8𝑎
−
𝑏 −1 + 𝜂 1 + 𝜂 2 1 + 3𝜉

8𝑎
1 + 3𝜂 −2+ 𝜉 1 + 𝜉 2

8𝑏
−
3𝑎𝜂 −1 + 𝜉 1+ 𝜉 2

8𝑏2
−
𝑎 1 + 3𝜂 −1+ 𝜉 1 + 𝜉 2

8𝑏
3 1 + 𝜂 −1 + 3𝜂 −1 + 𝜉2

8𝑎
−
3 −1 + 𝜂2 1 + 𝜉 −1 + 3𝜉

8𝑏
−
1

8
1 + 𝜂 −1 + 3𝜂 1+ 𝜉 −1 + 3𝜉

3 −2+ 𝜂 1 + 𝜂 2𝜉

8𝑎2
−
3𝑏 −1 + 𝜂 1 + 𝜂 2𝜉

8𝑎2
−

−2+ 𝜂 1 + 𝜂 2 −1+ 3𝜉

8𝑎
3𝜂 2 − 3𝜉 + 𝜉3

8𝑏2
−

1+ 3𝜂 −1+ 𝜉 2 2 + 𝜉

8𝑏
−
3𝑎𝜂 −1 + 𝜉 2 1+ 𝜉

8𝑏2

9 −1+ 𝜂2 −1+ 𝜉2

8𝑎𝑏
−
3 1 + 𝜂 −1 + 3𝜂 −1+ 𝜉2

8𝑎
−
3 −1+ 𝜂2 −1+ 𝜉 1+ 3𝜉

8𝑏

−
𝑏 −1 + 𝜂 1 + 𝜂 2 −1+ 3𝜉

8𝑎

−
𝑎 1 + 3𝜂 −1+ 𝜉 2 1+ 𝜉

8𝑏

−
1

8
1 + 𝜂 −1 + 3𝜂 −1+ 𝜉 1+ 3𝜉



Matrica krutosti
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𝑘1−1 =
𝐾

𝑎𝑏

3

175
ሺ42 +

65 𝑎4 + 𝑏4

𝑎2𝑏2

𝑘1−2 = 𝑘2−1 =
𝐾

𝑎𝑏

1

175

195𝑎2

𝑏
+
55𝑏3

𝑎2
+ 21 𝑏 + 5𝑏𝜈

itd. (Metoda konačnih elemenata, deo II)

𝑘1−3 = 𝑘3−1 =
𝐾

𝑎𝑏
−
11𝑎3

35𝑏2
−
39𝑏2

35𝑎
−

3

25
𝑎 1 + 5𝜈

𝑘1−4 = 𝑘4−1 =
𝐾

𝑎𝑏

11𝑎3

35𝑏
+
11𝑏3

35𝑎
+

1

50
𝑎 𝑏 + 10𝑏𝜈

𝐤 = න

−1

1

න

−1

1

𝐁𝑇 𝜉, 𝜂 𝐃𝐁 𝜉, 𝜂 det𝐉𝑑𝜉𝑑𝜂



Vektor ekvivalentnog opterećenja Q određuju se analognim 
postupkom kao i kod KE sa 12 stepeni slobode

 U slučaju jednako raspodeljenog opterećenja qz vektor 
ekvivalentnog opterećenja glasi

 Primenom konformnih KE, sa povećanjem broja stepeni 
slobode modela (progušćivanje mreže) tačnom rešenju za 
pomeranja monotono se prilazi sa donje strane. Generalno, 
konvergencija rešenja određenih primenom konformnih KE 
bolja je nego kod rešenja određenih nekonformnim KE

Pravougaoni KE sa 16 SS. Klasična 
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Uzima se u obzir uticaj transverzalnih sila na deformaciju 
klizanja

 Polazi se od pretpostavke da su pomeranja (ugibi) i ukupne 
rotacije normala poprečnih preseka međusobno nezavisne 
veličine

C0 kontinuitet

Obrtanje vlakna

 gde su uglovi rotacije normale
na srednju ravan ∂w/∂x i ∂w/∂y,
a φx

s i φy
s rotacije vlakana usled

transverzalnih sila
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 Komponente pomeranja u i v proizvoljne tačke unutar ploče 
glase

 Za sve tačke koje se nalaze na normali na srednju površ 
(εz = ∂w/∂z = 0) pomeranje w glasi

Veze između deformacije i pomeranja mogu da se prikažu u 
matričnom obliku
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Definiše se vektor 𝛋 (deformacije usled savijanja, tj. promene 
krivina i torzije) i vektor 𝛄 (deformacije usled smicanja ili 
klizanja)

 Sada se može uspostaviti veza
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Veza između deformacije i napona glasi

 Sile u presecima mogu da se prikažu u sledećem obliku
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 Potencijalna energija deformacije

 Prethodni izraz razlikuje se od izraza u klasičnoj teoriji savijanja 
ploča za drugi sabirak koji predstavlja udeo transverzalnih sila u 
potencijalnoj energiji deformacije
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Geometrija i raspodela pomeranja opisuju se istim IF

 gde je k ukupan broj čvorova konačnog elementa, Ni je matrica 
interpolacionih funkcija i-tog čvora i di je vektor generalisanih 
pomeranja i-tog čvora

Matrica krutosti

 gde prvi deo predstavlja krutost na savijanje, a drugi krutost na 
smicanje

Izoparametarski KE. Rajsner-Mindlinova 
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Veza između vektora promene krivina i torzije u proizvoljnoj 
tački KE i vektora generalisanih pomeranja u čvorovima glasi

Veza između vektora deformacije klizanja u proizvoljnoj tački 
KE i vektora generalisanih pomeranja u čvorovima glasi
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Matrice Bb i Bs za konačni element mogu da se prikažu na 
sledeći način

Matrica interpolacionih funkcija za KE

Vektor generalisanih pomeranja za KE

 S obzirom na to da su interpolacione funkcije Ni zavisne od 
prirodnih koordinata ξ i η sledi da je

Izoparametarski KE. Rajsner-Mindlinova 
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Matrica krutosti (elementi mogu da se odrede numeričkom 
integracijom)

Vektor ekvivalentnog opterećenja i-tog čvora

Vektor ekvivalentnog opterećenja (elementi mogu da se 
odrede numeričkom integracijom)

 IF izvedene za izoparametarske KE mogu da se koriste i u ovom 
slučaju (npr. za četvorougaoni KE)
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 Prikazani KE osetljiv je na tzv. shear-locking efekat koji je 
izražen kod elemenata sa nižim stepenom interpolacije. Kod 
tankih ploča pri tačnoj integraciji matrice krutosti dobijaju se 
previše kruti KE zbog prevelikog učešća deformacije smicanja 
u ukupnoj energiji deformacije, što je posledica međusobne 
nezavisnosti polja pomeranja i polja obrtanja

 Jedan od najjednostavnijih načina za rešavanje prethodnog 
problema je selektivna integracija kod koje se tačna 
numerička integracija primenjuje na deo koji potiče od 
savijanja, a niži red numeričke integracije na deo matrice 
krutosti koji potiče od klizanja. Takođe, vrlo jednostavan način 
eleminacije shear-locking efekta je redukovana integracija
kod koje se primenjuje niži red numeričke integracije na deo 
matrice krutosti za savijanje i smicanje. Odgovarajućim 
izborom reda integracije mogu da se dobiju rešenja 
zadovoljavajuće tačnosti

Izoparametarski KE. Rajsner-Mindlinova 
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 Primenom selektivne i redukovane integracije može da se dobije 
veći broj nultih svojstvenih vrednosti (nultih energetskih oblika) od 
broja stepeni slobode KE kao krutog tela (test svojstvenih 
vrednosti). Elementi sa suvišnim nultim energetskim oblicima mogu 
da dovedu do nerealnih rešenja

 Pored testa svojstvenih vrednosti KE i grupa KE treba da zadovolje 
i tzv. patch testove (pri određenim uslovima mora da se obezbedi 
stanje konstantne deformacije u KE i sistemu KE). Pri patch 
testovima može da se bira takvo polje pomeranja koje odgovara 
traženom stanju konstantne deformacije (zadaju se 
odgovarajuća generalisana pomeranja u čvorovima na konturi), 
a test je ispunjen ako su sračunata pomeranja u poljima KE 
jednaka pretpostavljenom polju pomeranja. Umesto ovakvog 
pristupa za obezbeđivanje stanja konstantne deformacije može 
da se aplicira odgovarajuće opterećenje i uslovi oslanjanja. Test 
je ispunjen ako se u poljima KE dobije odgovarajuće stanje 
konstantne deformacije

Izoparametarski KE. Rajsner-Mindlinova 

teorija savijanja ploča

28.8.2025. OMKE 49



 Kvadratna ploča

 Podaci su: jednako raspodeljeno opterećenje qz = 10 kN/m2, 
modul elastičnosti E = 210∙106 kPa, Poasonov koeficijent 
ν = 0,3, raspon L = 1,0 m i debljina h = 0,01 m
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 Kvadratna ploča

Matrica krutosti KE određuje se numeričkom integracijom

Da bi se eliminisao shear-locking efekat primenjuje se 
selektivna integracija (za deo matrice krutosti na savijanje red 
numeričke integracije je 3x3, a za deo matrice krutosti na 
smicanje 2x2)

 Pri određivanju matrice krutosti za savijanje tačke integracije 
obeležene su brojevima 1, 2, 3, ... i 9, i istovremeno su jednake 
prirodnim koordinatama 
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 Kvadratna ploča

 Pri određivanju matrice krutosti za smicanje tačke integracije 
obeležene su brojevima 1, 2, 3 i 4, i istovremeno su jednake 
prirodnim koordinatama

Matrica krutosti za savijanje
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 Kvadratna ploča

Matrica krutosti za savijanje

 Tačka integracije 1
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 Kvadratna ploča

Matrica krutosti za savijanje

Analognim postupkom određuju se u tačkama integracije 2, 
3, 4, … i 9 matrice krutosti kb,2, kb,3, kb,4, ... i kb,9, respektivno, 
nakon čega se njihovim sabiranjem određuje numeričko 
rešenje dela matrice krutosti na savijanje kb,N
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 Kvadratna ploča

Matrica krutosti za smicanje

 Tačka integracije 1
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 Kvadratna ploča

Matrica krutosti za smicanje

Analognim postupkom određuju se u tačkama integracije 2, 
3, i 4 matrice krutosti ks,2, ks,3, i ks,4 respektivno, nakon čega se 
njihovim sabiranjem određuje numeričko rešenje dela matrice 
krutosti na smicanje ks,N
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 Kvadratna ploča

Matrica krutosti konačnog elementa kN određuje se 
sabiranjem matrica krutosti na savijanje i smicanje
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Komentar:
Matrica krutosti kN je pozitivno semidefinitna i ima 4 svojstvene vrednosti jednake nuli, tj. ima 1 
suvišni nulti energetski oblik. Ovaj element u kombinaciji sa selektivnom integracijom ima dobro 
ponašanje u smislu konvergencije rešenja i eliminacije shear-locking efekta ali se pri analizi 
savijanja ploča mora sa oprezom primenjivati jer elementi sa suvišnim nultim energetskim 
oblicima mogu da dovedu do nerealnih rešenja pri određenim graničnim uslovima (npr. 
kvadratna ploča opterećena koncentrisanom silom u jednom uglu sa minimalnim brojem 
oslonaca koji sprečavaju pomeranja kao krutog tela). Kod Lagranžovog elementa koji ima 9 
čvorova sa zamenjujućim poljem deformacije klizanja izbegava se pojava suvišnog nultog 
energetskog oblika i grupa elemenata prolazi patch testove (Teorija savijanja ploča – numeričke 

metode i računarski programi, Vuksanović Đ., Pujević B., IP „Nauka“ – Beograd, 1994.)



 Kvadratna ploča

Vektor ekvivalentnog opterećenja

 Elementi vektora ekvivalentnog optrećenja Q1 mogu da se 
odrede numeričkom integracijom (red 2 x 2)

U čvoru 1
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x

Q

            1 2 2 2 2 2 2 2, , det , 0,0347222z wN q J

            1 3 3 3 3 3 3 3, , det , 0,0347222z wN q J

           1 4 4 4 4 4 4 4, , det , 0,00930379z wN q J

           1 1 1 1 1 1 1 1, , det , 0,129585z wN q J



 Kvadratna ploča

Vektor ekvivalentnog opterećenja

 Sabiranjem prethodne četiri veličine određuje se vrednost u 
čvoru 1, odnosno vektor ekvivalentnog opterećenja 𝐐1

1 za 
čvor 1 glasi

Analognim postupkom određuju se elementi vektora 
ekvivalentnog opterećenja za ostale čvorove

 Rešenja za vektor ekvivalentnog opterećenja određena 
analitičkom i numeričkom integracijom međusobno su 
jednaka
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 Kvadratna ploča

Izoparametarski KE. Rajsner-Mindlinova 

teorija savijanja ploča. Primer 1

28.8.2025. OMKE 60

 
 

 
 
  
 
 
 
  

4

8x8

1 13 26 27

1

13

26

27

34,9003 2,4929 2,4929 2,4929

109,687 0 9,9715
10

sim. 3,3312 0

3,3312

aaK

 
 
 
 

   
 
 
  8x1

1

13

26

27

0,0694

0,2778

0

0

a aQ S

 

 
 
 
 
 
 

   
 
 







 

 
 


1 3

1

13

14

22

24

25

26

27

0,8024

0,4018

2,4004

0,4018

2,4004

0,2011

1,204

10

1,2045

5

a aa ad K S

𝑤1 = 0,8024 ⋅ 10−3m

𝑤1,tačno = 0,6552 ⋅ 10−3m



 Kvadratna ploča

 Sa ciljem povećanja tačnosti rešenja za ugib četvrtina ploče 
je diskretizovana sa 4 KE oblika kvadrata čija je dužina 
stranice jednaka četvrtini raspona ploče
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 Kvadratna ploča
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Redosled brojeva čvorova, vodeći računa da se koristi 

Lagranžov element sa 9 čvorova, glasi:

 konačni element 1: 1, 3, 13, 11, 2, 8, 12, 6 i 7,

 konačni element 2: 3, 5, 15, 13, 4, 10, 14, 8 i 9,

 konačni element 3: 11, 13, 23, 21, 12, 18, 22, 16 i 17, i

 konačni element 4: 13, 15, 25, 23, 14, 20, 24, 18 i 19.

Redosled brojeva stepeni slobode (wi, ϑix, i ϑiy) glasi:

 konačni element 1: 1, 2, 3, 7, 8, 9, 37, 38, 39, 31, 32, 33, 4, 

5, 6, 22, 23, 24, 34, 35, 36, 16, 17, 18, 19, 20 i 21,

 konačni element 2: 7, 8, 9, 13, 14, 15, 43, 44, 45, 37, 38, 39, 

10, 11, 12, 28, 29, 30, 40, 41, 42, 22, 23, 24, 25, 26 i 27,

 konačni element 3: 31, 32, 33, 37, 38, 39, 67, 68, 69, 61, 62, 

63, 34, 35, 36, 52, 53, 54, 64, 65, 66, 46, 47, 48, 49, 50 i 51, i

 konačni element 4: 37, 38, 39, 43, 44, 45, 73, 74, 75, 67, 68, 

69, 40, 41, 42, 58, 59, 60, 70, 71, 72, 52, 53, 54, 55, 56 i 57.

Brojevi aktivnih stepeni slobode su: 1, 4, 5, 7, 8, 10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 

37, 38, 39, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56 i 57



 Kvadratna ploča
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𝑤1 = 0,6649 ⋅ 10−3m

𝑤1,tačno = 0,6552 ⋅ 10−3m

Komentar:

S obzirom na odnos debljine i 

raspona opravdano je usvojiti da se 

ploča ponaša prema klasičnoj teoriji



 Kvadratna ploča

Ako bi u modelu promenili samo debljinu ploče na vrednost
h = 0,1 m tada bi se za ugib sredine raspona ploče dobile 
sledeće vrednosti:

 tačno rešenje klasične teorije

 𝑤1,𝑎 = 0,0006552 ⋅ 10−3m

 rešenje određeno primenom MKE (Rajsner-Mindlinova teorija)

 𝑤1,𝑏 = 0,0007885 ⋅ 10−3m
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Komenatar:
Razlika između tačnog rešenja prema klasičnoj teoriji i rešenja određenog 
primenom MKE (Rajsner-Mindlinova teorija) iznosi približno 17% u odnosu na 
rešenje određeno primenom MKE. Bez obzira na malu grešku rešenja po MKE 
(rešenje za ugib sredine raspona konvergira ka vrednosti 0,0007623∙10-3 m) 
zaključuje se da ponašanje ploče nije u skladu sa klasičnom teorijom. Ovo je 
posledica zanemarenja uticaja deformacije klizanja u klasičnoj teoriji



 Kružna ploča
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Podaci su: jednako raspodeljeno 

opterećenje qz = 10 kN/m2, modul 

elastičnosti E = 210 GPa, Poasonov 

koeficijent ν = 0,3, poluprečnik 

r = 0,5 m i debljina h = 0,01 m
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 Kružna ploča
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Redosled brojeva čvorova, vodeći računa o pravilu za 
Lagranžov element koji ima 9 čvorova, glasi:

 konačni element 1: 1, 3, 13, 11, 2, 8, 12, 6 i 7,
 konačni element 2: 3, 5, 19, 13, 4, 10, 16, 8 i 9, i
 konačni element 3: 11, 13, 19, 17, 12, 16, 18, 14, 15.

Redosled brojeva stepeni slobode (wi, ϑix, i ϑiy) glasi:

 konačni element 1: 1, 2, 3, 7, 8, 9, 37, 38, 39, 31, 32, 33, 4, 5, 6, 22, 23, 24, 34, 35, 36, 16, 17, 18, 19, 20 i 21,
 konačni element 2: 7, 8, 9, 13, 14, 15, 55, 56, 57, 37, 38, 39, 10, 11, 12, 28, 29, 30, 46, 47, 48, 22, 23, 24, 25, 26 i 27, i
 konačni element 3: 31, 32, 33, 37, 38, 39, 55, 56, 57, 49, 50, 51, 34, 35, 36, 46, 47, 48, 52, 53, 54, 40, 41, 42, 43, 44 i 45.

Brojevi aktivnih stepeni slobode: 1, 4, 5, 7, 8, 10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 
43, 44, 45, 46, 47 i 48.

Komentar:

Matrica krutosti i vektor ekvivalentnog opterećenja određuju se numeričkom integracijom analogno kao u 

prethodnom primeru. Da bi se eliminisao shear-locking efekat primenjuje se selektivna integracija. Za deo 

matrice krutosti na savijanje red numeričke integracije je 3x3, a za deo matrice krutosti na smicanje 2x2



 Kružna ploča
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Komentari:
• Postiže se zadovoljavajuća tačnost rešenja pri vrlo gruboj mreži

• S obzirom na odnos debljine i prečnika opravdano je usvojiti da je ponašanje ploče prema klasičnoj teoriji

• Poređenjem tačnog rešenja za ugib centra ploče određenog prema klasičnoj i Rajsner-Mindlinovoj teoriji zaključuje se da je 

razlika mala (približno 0,2% u odnosu na tačno rešenje Rajsner-Mindlinove teorije), tj. pretpostavka da se ploča ponaša prema 

klasičnoj teoriji je opravdana
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 Kružna ploča

Ako bi u modelu promenili
samo debljinu ploče na
vrednost h = 0,1 m tada bi se
za ugib centra ploče dobile
sledeće vrednosti

 tačno rešenje klasične teorije:

 𝑤1,𝑎 = 0,0005078 ⋅ 10−3m

 tačno rešenje Rajsner-Mindlinove teorije:

 𝑤1,𝑏 = 0,0006007 ⋅ 10−3m

 rešenje po MKE (Rajsner-Mindlinova teorija):

 𝑤1,𝑐 = 0,0005980 ⋅ 10−3m

Izoparametarski KE. Rajsner-Mindlinova 
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Komentari:
• Sada razlika između tačnih rešenja prema klasičnoj i Rajsner-Mindlinovoj teoriji ploča iznosi približno 15% u odnosu na rešenje Rajsner-

Mindlinove teorije, tj. ploča se ne ponaša prema klasičnoj teoriji, što se moglo zaključiti na osnovu odnosa prečnika i debljine

• Ugib prema klasičnoj teoriji je manji od tačne vrednosti, a to je posledica zanemarenja uticaja deformacije klizanja. 

• Razlika između tačnog rešenja prema Rajsner-Mindlinovoj teoriji i rešenja određenog primenom MKE (Rajsner-Mindlinova teorija), iznosi 

približno 0,4% u odnosu na tačno rešenje, tj. postiže se zadovoljavajuća tačnost rešenja pri vrlo gruboj mreži
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U okviru linearne teorije kod ravnih KE mogu da se razdvoje 
membranske deformacije od deformacija savijanja

Membranske komponente deformacija zavise samo od 
membranskih komponenata pomeranja

 Komponente deformacija od savijanja zavise samo od 
pomeranja w upravnog na površinu KE

 S obzirom na superpoziciju membranskog naprezanja i 
savijanja, matrica krutosti ravnog konačnog elementa 
određuje se superpozicijom matrice krutosti membranskog KE 
za ravansko stanje napona i matrice krutosti KE ploče pri 
savijanju

Ljuske. Ravni konačni elementi
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 Trougaoni KE čijom superpozicijom se određuje KE za analizu 
ljuski, odnosno prikazan je KE za analizu ravanskog stanja 
napona (CST element sa 6 stepeni slobode) i nekonformni KE 
za analizu savijanja ploča sa 9 stepeni slobode

 KE ima 5 stepeni slobode u svakom čvoru, tj. ukupno 15 stepeni 
slobode pri čemu rotacija oko normale na površinu elementa 
(lokalna osa z) nije uključena u formulaciju

 S obzirom na to potrebno je dodati stepen slobode, tj. ugao rotacije oko normale na površinu KE

 S obzirom na to da ovaj stepen slobode nije uključen u formulaciju KE matricu krutosti je potrebno 
proširiti vrstama i kolonama koje odgovaraju stepenu slobode φiz (tzv. drilling d.o.f.), pri čemu ovi 
elementi imaju vrednost nula. Stepenu slobode φiz odgovara fiktivna komponenta Miz u vektoru 
ekvivalentnog opterećenja

Ljuske. Ravni konačni elementi
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Vektor generalisanih pomeranja i sila u čvorovima KE glase

 Jednačina KE glasi

Matrica krutosti određuje se superpozicijom matrice krutosti za 
analizu ravanskog stanja napona i matrice krutosti za 
savijanje ploče 

Ljuske. Ravni konačni elementi. 

Trougaoni KE sa 18 stepeni slobode
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Matrica krutosti

Ljuske. Ravni konačni elementi. 

Trougaoni KE sa 18 stepeni slobode
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Komentari:

• Matrica krutosti sadrži elemente koji imaju vrednost nula u tri vrste i tri kolone koje odgovaraju stepenu slobode

φiz. Ako su u zajedničkom čvoru spojeni komplanarni elementi zbog nulte krutosti koja odgovara rotaciji oko

ose z lokalnog koordinatnog sistema globalna matrica krutosti sistema KE postaje singularna.

• Ovo ima za posledicu potrebu za redukcijom jednačina sistema KE za broj čvorova u kojima su spojeni

komplanarni elementi.

• Jedan od načina za rešavanje ovog problema je pridruživanje tzv. fiktivne rotacione krutosti oko normale na

površinu komplanarnih KE, tj. uz stepene slobode φiz u matrici krutosti usvajaju se fiktivne rotacione krutosti čije

su vrednosti dovoljne da se eliminiše singularitet matrice krutosti sistema KE, a da se ne utiče bitno na tačnost

rešenja.

• Dodatno pojednostavljenje je da se, bez obzira na to da li su elementi spojeni u čvoru komplanarni ili ne, svim

KE dodaju fiktivne rotacione krutosti uz stepene slobode φiz.

• U Zienkiewicz O. C., Taylor R. L., Finite Element Method for Solids and Structural Mechanics, 6th Edition, Elsevier,

2006. i Cook R. D., Malkus D. S., Plesha M. E., Witt R. J., Concepts and Applications of Finite Element Analysis,

John Wiley & Sons, 2002. mogu se naći preporuke.



Matrica transformacije

Analogan postupak kao i kod linijskih KE

Ljuske. Ravni konačni elementi. 

Trougaoni KE sa 18 stepeni slobode
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Analognim postupkom mogu da se izvedu i drugi ravni 
konačni elementi za analizu ljuski. Na primer

 Pravougaoni KE čija se matrica krutosti određuje superpozicijom 
dvodimenzionalnog pravougaonog KE koji ima 8 stepeni slobode 
(ravansko stanje napona) i nekonformnog pravougaonog KE koji ima 
12 stepeni slobode za analizu savijanja ploča (dodaje se fiktivna 
rotaciona krutost oko normale na srednju površ) dobija se element sa 
24 stepena slobode

 Izoparametarski četvorougaoni KE čija se matrica krutosti određuje 
superpozicijom izoparametarskog četvorougaonog KE (ravansko 
stanje napona) i proizvoljnog četvorougaonog KE za analizu 
savijanja ploča

Ljuske. Ravni konačni elementi
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 Kod primene ravnih KE javlja se greška u aproksimaciji 
geometrije srednje površi tanke ljuske i greška u 
aproksimaciji polja osnovnih nepoznatih veličina u KE

Nezavisnost membranskih deformacija i deformacija usled 
savijanja je nedostatak ravnih KE

 Na membranske deformacije pored komponenata pomeranja u i v
utiče i komponenta pomeranja w. Povezanost membranskog 
naprezanja i naprezanja od savijanja ostvarena je na globalnom 
nivou kod susednih KE koji nisu komplanarni. U ovom slučaju 
membranske sile iz jednog elementa izazivaju i savijanje u susednom 
elementu, a momenti i transverzalne sile iz jednog elementa izazivaju 
i membransko naprezanje u susednom elementu. Greška se smanjuje 
sa povećanjem broja KE (progušćenje mreže) pri čemu diskretni 
model bolje aproksimira geometriju srednje površi ljuske

Ljuske. Ravni konačni elementi
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